Zusammenfassung
Cochlea-Implantate (CI) stellen seit fast 25 Jahren den Goldstandard
in der Versorgung taub geborener Kinder bzw. postlingual ertaubter Erwachsener
dar. Die Cochlea-Implantate sind damit die Erfolgsgeschichte im Bereich der
neurobionischen Prothesen. Durch die inzwischen routinemäßige
Versorgung von Erwachsenen, aber besonders auch Klein- und Kleinstkindern,
bestehen große Anforderungen an die Implantate. Dies gilt besonders im
Hinblick auf die Biokompatibilität der an der Oberfläche befindlichen
Anteile des CI. Darüber hinaus existieren erhebliche mechanische
Herausforderungen an einzelne Bauteile, wie z. B. Flexibilität bzw.
Bruchfestigkeit des Elektrodenträgers und der Bruchfestigkeit des
Implantatgehäuses gegen äußere Krafteinwirkungen. Durch die
unmittelbare Nähe der Implantate zur Mittelohrschleimhaut, wie auch dem
Übergang zur Perilymphe der Cochlea, besteht zumindest die prinzipielle
Gefahr eines Übertritts von Bakterien entlang des Elektrodenträgers
in die Cochlea. Durch die vielfältigen, an das Cochlea-Implantat
gestellten Anforderungen auf dem Gebiet der Biokompatibilität und der
Elektrodenmechanik ergibt sich trotz des derzeit bereits hohen technischen
Niveaus der Implantate weiterer Spielraum zur kontinuierlichen Verbesserung der
Implantat- bzw. Materialeigenschaften und hierdurch gesteigerte
Effektivität der Cochlea-Implantate. Nachfolgend soll daher auf
grundlegende Materialaspekte der Cochlea-Implantate sowie zukünftige
Entwicklungsmöglichkeiten eingegangen werden..
Abstract
Cochlear implants (CI) represent the „gold standard”
for the treatment of congenitally deaf children and postlingually deafened
adults. Thus, cochlear implantation is a success story of new bionic prosthesis
development. Owing to routine application of cochlear implants in adults but
also in very young children (below the age of one), high demands are placed on
the implants. This is especially true for biocompatibility aspects of surface
materials of implant parts which are in contact with the human body. In
addition, there are various mechanical requirements which certain components of
the implants must fulfil, such as flexibility of the electrode array and
mechanical resistance of the implant housing. Due to the close contact of the
implant to the middle ear mucosa and because the electrode array is positioned
in the perilymphatic space via cochleostomy, there is a potential risk of
bacterial transferral along the electrode array into the cochlea. Various
requirements that have to be fulfilled by cochlear implants, such as
biocompatibility, electrode micromechanics, and although a very high level of
technical standards has been carried out there is still demand for the
improvement of implants as well as of the materials used for manufacturing,
ultimately leading to increased implant performance. General considerations of
material aspects related to cochlear implants as well as potential future
perspectives of implant development will be discussed.
Schlüsselwörter
Cochlea-Implantat - Biomaterialien - Biokompatibilität - Elektrode - Innenohr - Cochleostomie - Oberflächenfunktionalisierung - Drug Delivery - Nanopartikel - Coating
Key words
cochlear implants - biomaterials - biocompatibility - electrode - inner ear - cochleostomy - surface functionalisation - drug delivery - nanoparticle - coating
Literatur
-
1
Burgio P.
Safety considerations of cochlear implantation.
Otolaryngol Clin North Am.
1986;
19 (2)
237-247
-
2
Lehnhardt E.
Biokompatibilität der Cochlear-implants.
Eur Arch Otorhinolaryngol Suppl.
1992;
1
223-233
-
3 BQS Qualitätsreport 2007. (http://www.bqs-qualitaetsreport.de) 36
-
4
Dunn C C, Tyler R S, Oakley S, Gantz B J, Noble W.
Comparison of speech recognition and localization performance
in bilateral and unilateral cochlear implant users matched on duration of
deafness and age at implantation.
Ear Hear.
2008;
29 (3)
352-359
-
5
Gantz B J, Turner C.
Combining acoustic and electrical speech processing:
Iowa/Nucleus hybrid implant.
Acta Otolaryngol.
2004;
24 (4)
344-347
-
6
Lenarz T, Stöver T, Buechner A. et al .
Temporal bone results and hearing preservation with a new
straight electrode.
Audiol Neurootol.
2006;
11 Suppl 1
34-41
-
7
Briggs R J, Tykocinski M, Xu J. et al .
Comparison of round window and cochleostomy approaches with a
prototype hearing preservation electrode.
Audiol Neurootol.
2006;
11 Suppl 1
42-48
-
8
Adunka O, Kiefer J, Unkelbach M H, Lehnert T, Gstoettner W.
Development and evaluation of an improved cochlear implant
electrode design for electric acoustic stimulation.
Laryngoscope.
2004;
114 (7)
1237-1241
-
9
James C J, Fraysse B, Deguine O. et al .
Combined electroacoustic stimulation in conventional
candidates for cochlear implantation.
Audiol Neurootol.
2006;
11 Suppl 1
57-62
-
10
Shannon R V, Otto S R.
Psychophysical measures from electrical stimulation of the
human cochlear nucleus.
Hear Res.
1990;
47 (1 – 2)
159-168
-
11
Colletti V, Shannon R V.
Open set speech perception with auditory brainstem
implant?.
Laryngoscope.
2005;
115 (11)
1974-1978
-
12
Colletti V.
Auditory outcomes in tumor vs. nontumor patients fitted with
auditory brainstem implants.
Adv Otorhinolaryngol.
2006;
64
167-185
-
13
Lenarz T, Lim H H, Reuter G, Patrick J F, Lenarz M.
The auditory midbrain implant: a new auditory prosthesis for
neural deafness-concept and device description.
Otol Neurotol.
2006;
27 (6)
838-843
-
14
Lenarz M, Lim H H, Lenarz T. et al .
Auditory midbrain implant: histomorphologic effects of
long-term implantation and electric stimulation of a new deep brain stimulation
array.
Otol Neurotol.
2007;
28 (8)
1045-1052
-
15
Lenarz M, Lim H H, Patrick J F, Anderson D J, Lenarz T.
Electrophysiological validation of a human prototype auditory
midbrain implant in a guinea pig model.
J Assoc Res Otolaryngol.
2006;
7 (4)
383-398
-
16
Lim H H, Lenarz T, Joseph G. et al .
Electrical stimulation of the midbrain for hearing
restoration: insight into the functional organization of the human central
auditory system.
J Neurosci.
2007;
27 (49)
13 541-13 551
-
17
Lim H H, Lenarz T, Joseph G. et al .
Effects of phase duration and pulse rate on loudness and
pitch percepts in the first auditory midbrain implant patients: Comparison to
cochlear implant and auditory brainstem implant results.
Neuroscience.
2008;
154 (1)
370-380
-
18
O'Donoghue G M, Nikolopoulos T P.
Minimal access surgery for pediatric cochlear
implantation.
Otol Neurotol.
2002;
23 (6)
891-894
-
19
Ray J, Gibson W, Sanli H.
Surgical complications of 844 consecutive cochlear
implantations and observations on large versus small incisions.
Cochlear Implants Int.
2004;
5 (3)
87-95
-
20
Bajaj Y, Wyatt M, Hartley B.
Small postaural incision for paediatric cochlear
implantation.
Cochlear Implants Int.
2005;
6 (2)
77-84
-
21
Pau H W, Sievert U, Graumüller S, Wild E.
Incisions for cochlear implant flaps and superficial skin
temperature. Skin temperature/blood circulation in CI flaps.
Otolaryngol Pol.
2004;
58 (4)
713-719
-
22
Müller J, Geyer G, Helms J.
Ionomerzement in der Cochlear-Implant-Chirurgie.
Laryngo-Rhino-Otologie.
1993;
72 (1)
36-38
-
23
Müller J, Schön F, Helms J.
Sichere Fixierung von Cochlear-Implant-Elektrodenträgern
bei Kindern und Erwachsenen – erste Erfahrungen mit einem neuen
Titan-Clip.
Laryngo-Rhino-Otologie.
1998;
77 (4)
238-240
-
24
Lee D J, Driver M.
Cochlear implant fixation using titanium screws.
Laryngoscope.
2005;
115 (5)
910-911
-
25 Holtkamp V. Cochlea Implantate unter Stoßbelastung –
Auswertung von Unfallszenarien, Ermittlung von Beanspruchungsgrenzen und
Entwicklung eines standardisierbaren Prüfverfahrens. Dissertation. 2004
-
26
Battmer R D, O'Donoghue G M, Lenarz T.
A multicenter study of device failure in European cochlear
implant centers.
Ear Hear.
2007;
28 (2 Suppl)
95S-99S
-
27
Kha H N, Chen B K, Clark G M, Jones R.
Stiffness properties for Nucleus standard straight and
contour electrode arrays.
Med Eng Phys.
2004;
26 (8)
677-685
-
28
Lim Y S, Park S I, Kim Y H, Oh S H, Kim S J.
Three-dimensional analysis of electrode behavior in a human
cochlear model.
Med Eng Phys.
2005;
27(8)
695-703
-
29
Rebscher S J, Heilmann M, Bruszewski W. et al .
Strategies to improve electrode positioning and safety in
cochlear implants.
IEEE Trans Biomed Eng.
1999;
46 (3)
340-352
-
30
Rebscher S J, Hetherington A, Bonham B. et al .
Considerations for design of future cochlear implant
electrode arrays: electrode array stiffness, size, and depth of insertion.
J Rehabil Res Dev.
2008;
45 (5)
731-747
-
31
Kha H N, Chen B K.
Determination of frictional conditions between electrode
array and endosteum lining for use in cochlear implant models.
J Biomech.
2006;
39 (9)
1752-1756
-
32
Kha H N, Chen B K, Clark G M.
3D finite element analyses of insertion of the Nucleus
standard straight and the Contour electrode arrays into the human cochlea.
J Biomech.
2007;
40 (12)
2796-2805
-
33
Pau H W, Just T, Dommerich S, Behrend D.
Temporal bone investigations on landmarks for conventional or
endosteal insertion of cochlear electrodes.
Acta Otolaryngol.
2007;
127 (9)
920-926
-
34
Pau H W, Just T, Lehnhardt E, Hessel H, Behrend D.
An “endosteal electrode” for cochlear
implantation in cases with residual hearing? Feasibility study: preliminary
temporal bone experiments.
Otol Neurotol.
2005;
26 (3)
448-454
-
35
Abbasi F, Mirzadeh H, Simjoo M.
Hydrophilic interpenetrating polymer networks of
poly(dimethyl siloxane) (PDMS) as biomaterial for cochlear implants.
J Biomater Sci Polym Ed.
2006;
17 (3)
341-355
-
36
Seldon H L, Dahm M C, Clark G M, Crowe S.
Silastic with polyacrylic acid filler: swelling properties,
biocompatibility and potential use in cochlear implants.
Biomaterials.
1994;
15 (14)
1161-1169
-
37
Tykocinski M, Cowan R S.
Poly-vinyl-alcohol (PVA) coating of cochlear implant
electrode arrays: an in-vivo biosafety study.
Cochlear Implants Int.
2005;
6 (1)
16-30
-
38
Kim C S, Chang S O, Lee H J. et al .
Cochlear implantation in patients with a history of chronic
otitis media.
Acta Otolaryngol.
2004;
124 (9)
1033-1038
-
39
Issa T K, Bahgat M A, Linthicum Jr F H.
Tissue reaction to prosthetic materials in human temporal
bones.
Am J Otol.
1983;
5 (1)
40-43
-
40
Clark G M, Pyman B C, Webb R L, Bailey Q E, Shepherd R K.
Surgery for an improved multiple-channel cochlear
implant.
Ann Otol Rhinol Laryngol.
1984;
93 (3 Pt 1)
204-207
-
41
Franz B, Clark G M, Bloom D M.
Permeability of the implanted round window membrane in the
cat.
Acta Otolaryngol (Stockh).
1984;
410
17-23
-
42
Clark G M, Shepherd R K, Franz B, Bloom D.
Intraocular electrode implantation. Round window membrane
sealing procedures and permeability studies.
Acta Otolaryngol Suppl.
1984;
410
1-23
-
43
Dahm M C, Clark G M, Franz B K. et al .
Cochlear implantation in children: labyrinthitis following
pneumococcal otitis media in unimplanted and implanted cat cochleas.
Acta Otolaryngol.
1994;
114 (6)
620-625
-
44
Nadol Jr J B, Eddington D K.
Histologic evaluation of the tissue seal and biologic
response around cochlear implant electrodes in the human.
Otol Neurotol.
2004;
25
257-262
-
45 Hyland M, Mailley S, Savanidis C, McLaughlin J, McAdams E. Thin film platinum and iridium oxide coatings applied to
gold/flexible polymers for functional electrical stimulation electrodes.
Proceedings of the 5th Annual Conference of the International Functional
Electrical Stimulation Society 2000.
-
46
Paasche G, Bockel F, Tasche C, Lesinski-Schiedat A, Lenarz T.
Changes of postoperative impedances in cochlear implant
patients: the short-term effects of modified electrode surfaces and
intracochlear corticosteroids.
Otol Neurotol.
2006;
27 (5)
639-647
-
47
Clark G M, Shepherd R K, Franz B K. et al .
The histopathology of the human temporal bone and auditory
central nervous system following cochlear implantation in a patient.
Correlation with psychophysics and speech perception results.
Acta Otolaryngol Suppl.
1988;
448
1-65
-
48 Clark G. Cochlear Implants: Fundamentals and applications. New York; Springer 2003: 171
-
49
Brummer S B, McHardy J, Turner M J.
Electrical stimulation with Pt electrodes: Trace analysis for
dissolved platinum and other dissolved electrochemical products.
Brain Behav Evol.
1977;
14 (1 – 2)
10-22
-
50
Black R C, Hannaker P.
Dissolution of smooth platinum electrodes in biological
fluids.
Appl Neurophysiol.
1980;
42 (6)
366-374
-
51
Maurer J, Marangos N, Ziegler E.
Reliability of cochlear implants.
Otolaryngol Head Neck Surg.
2005;
132 (5)
746-750
-
52
Luria L W.
The role of medical grade silicones in surgery and its
topical applications.
Oper Tech Plastic Reconstr Surg.
2002;
9
67-74
-
53
Malick M H, Carr J A.
Flexible elastomer molds in burn scar control.
Am J Occup Ther.
1980;
34 (9)
603-608
-
54 Rosato D V. Polymers, processes and properties of medical plastics:
including markets and applications. In: Szycher M, Hrsg Biocompatible Polymers, Metals, and Composites. Lancaster PA; Technomic Publ 1983: 1019-1067
-
55
Swanson J W, Lebeau J E.
The effect of implantation on the physical properties of
silicone rubber.
J Biomed Mater Res.
1974;
8 (6)
357-367
-
56
Dolezel B, Adamiacuterovaacute L, Vondraacutecek P, Naacuteprstek Z.
In vivo degradation of polymers. II. Change of mechanical
properties and cross-link density in silicone rubber pacemaker lead insulations
during long-term implantation in the human body.
Biomaterials.
1989;
10 (6)
387-392
-
57
Leslie L J, Jenkins M J, Shepherd D E, Kukureka S N.
The effect of the environment on the mechanical properties of
medical grade silicones.
J Biomed Mater Res B Appl Biomater.
2008;
86B (2)
460-465
-
58 Robblee L S, Sweeney J D. Bioelectrodes. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, Hrsg Biomaterials Science. London; Academic Press Ltd 1996: 371-375
-
59
Brummer S B, Turner M J.
Electrical stimulation of the nervous system: The principle
of safe charge injection with noble metal electrodes.
Bioelectrochemistry and Bioenergetics.
1975;
2 (1)
13-25
-
60
Clark G M, Tong Y C, Patrick J F. et al .
A multi-channel hearing prosthesis for profound-to-total
hearing loss.
J Med Eng Technol.
1984;
8 (1)
3-8
-
61
Puri S, Dornhoffer J L, North P E.
Contact dermatitis to silicone after cochlear
implantation.
Laryngoscope.
2005;
115 (10)
1760-1762
-
62
Kunda L D, Stidham K R, Inserra M M. et al .
Silicone allergy: A new cause for cochlear implant extrusion
and its management.
Otol Neurotol.
2006;
27 (8)
1078-1082
-
63
Migirov L, Dagan E, Kronenberg J.
Surgical and medical complications in different cochlear
implant devices.
Acta Otolaryngol.
2008;
Sep 1 [Epub ahead of print]
1-4
-
64
Stratigouleas E D, Perry B P, King S M, Syms 3rd C A.
Complication rate of minimally invasive cochlear
implantation.
Otolaryngol Head Neck Surg.
2006;
135 (3)
383-386
-
65
Li P M, Somdas M A, Eddington D K, Nadol J B .
Analysis of intracochlear new bone and fibrous tissue
formation in human subjects with cochlear implants.
Ann Otol Rhinol Laryngol.
2007;
116 (10)
731-738
-
66
Xu J, Shepherd R K, Millard R E, Clark G M.
Chronic electrical stimulation of the auditory nerve at high
stimulus rates: A physiological and histopathological study.
Hear Res.
1997;
105
1-29
-
67
Duan Y Y, Clark G M, Cowan R S.
A study of intra-cochlear electrodes and tissue interface by
electrochemical impedance methods in vivo.
Biomaterials.
2004;
25 (17)
3813-3828
-
68
Peeters S, van Immerseel L, Zarowski A. et al .
New developments in cochlear implants.
Acta oto-rhino-laryngologica belg.
1998;
52
115-127
-
69
De Ceulaer G, Johnson S, Yperman M. et al .
Long-term evaluation of the effect of intra-cochlear steroid
deposition on electrode impedance in cochlear implant patients.
Otol Neurotol.
2003;
24
769-774
-
70
Rivas A, Marlowe A L, Chinnici J E, Niparko J K, Francis H W.
Revision cochlear implantation surgery in adults: indications
and results.
Otol Neurotol.
2008;
29 (5)
639-648
-
71
Rühl S, Poyda K, Lesinski-Schiedat A, Gärtner L, Lenarz T.
Reimplantation bei CI-Patienten seit 1985.
GMS Curr Posters Otorhinolaryngol Head Neck Surg.
2008;
4
Doc16
-
72
Burton M J, Shepherd R K, Clark G M.
Cochlear histopathologic characteristics following long-term
implantation. Safety studies in the young monkey.
Arch Otolaryngol Head Neck Surg.
1996;
122 (10)
1097-1104
-
73
Gray R F, Baguley D M, Harries M L, Court I, Lynch C.
Profound deafness treated by the Ineraid multichannel
intracochlear implant.
Journal of Laryngology and Otology.
1993;
107 (8)
673-680
-
74
Hall-Stoodley L, Hu F Z, Gieseke A. et al .
Direct detection of bacterial biofilms on the middle-ear
mucosa of children with chronic otitis media.
JAMA.
2006;
296 (2)
202-211
-
75
Franz B K, Clark G M, Bloom D M.
Effect of experimentally induced otitis media on cochlear
implants.
Ann Otol Rhinol Laryngol.
1987;
96 (2 Pt 1)
174-177
-
76
El-Kashlan H K, Telian S A.
Cochlear implantation in the chronically diseased ear.
Curr Opin Otolaryngol Head Neck Surg.
2004;
12 (5)
384-386
-
77
Antonelli P J, Lee J C, Burne R A.
Bacterial biofilms may contribute to persistent cochlear
implant infection.
Otol Neurotol.
2004;
25 (6)
953-957
-
78
Cunningham C D , Slattery W H , Luxford W M.
Postoperative infection in cochlear implant patients.
Otolaryngol Head Neck Surg.
2004;
131
109-114
-
79
Pawlowski K S, Wawro D, Roland P S.
Bacterial biofilm formation on a human cochlear implant.
Otol Neurotol.
2005;
26 (5)
972-975
-
80
Hopfenspirger M T, Levine S C, Rimell F L.
Infectious complications in pediatric cochlear implants.
Laryngoscope.
2007;
117 (10)
1825-1829
-
81
Stewart P S, Costerton J W.
Antibiotic resistance of bacteria in biofilms.
Lancet.
2001;
358
135-138
-
82
Loeffler K A, Johnson T A, Burne R A, Antonelli P J.
Biofilm formation in an in vitro model of cochlear implants
with removable magnets.
Otolaryngol Head Neck Surg.
2007;
136 (4)
583-588
-
83
Cristobal R, Edmiston Jr C E, Runge-Samuelson C L. et al .
Fungal biofilm formation on cochlear implant hardware after
antibiotic-induced fungal overgrowth within the middle ear.
Pediatr Infect Dis J.
2004;
23 (8)
774-778
-
84
Reefhuis J, Honein M A, Whitney C G. et al .
Risk of Bacterial Meningitis in Children with Cochlear
Implants.
N Engl J Med.
2003;
349 (5)
435-445
-
85
Arnold W, Bredberg G, Gstöttner W. et al .
Meningitis following cochlear implantation: pathomechanisms,
clinical symptoms, conservative and surgical treatments.
ORL J Otorhinolaryngol Relat Spec.
2002;
64 (6)
382-389
-
86
Wei B P, Shepherd R K, Robins-Browne R M. et al .
Threshold shift: effects of cochlear implantation on the risk
of pneumococcal meningitis.
Otolaryngol Head Neck Surg.
2007;
136 (4)
589-596
-
87
Wei B P, Shepherd R K, Robins-Browne R M. et al .
Effects of Inner Ear Trauma on the Risk of Pneumococcal
Meningitis.
Arch Otolaryngol Head Neck Surg.
2007;
133 (3)
250-259
-
88
Tykocinski M, Cohen L T, Pyman B C. et al .
Comparison of electrode position in the human cochlea using
various perimodiolar electrode arrays.
American Journal of Otology.
2000;
21
205-211
-
89
Clark G M, Pyman B C, Pavillard R E.
A protocol for the prevention of infection in cochlear
implant surgery.
J Laryngol Otol.
1980;
94 (12)
1377-1386
-
90
Puls R, Hoene A, Kuehn J P. et al .
Percutaneous treatment of infrarenal aortic aneurysm with a
polytetrafluoroethylene-covered nitinol stent-graft via a 10-F introducer
sheath.
J Vasc Interv Radiol.
2008;
19 (9)
1378-1381
-
91
Kerdjoudj H, Moby V, Berthelemy N. et al .
The ideal small arterial substitute: Role of cell seeding and
tissue engineering.
Clin Hemorheol Microcirc.
2007;
37 (1 – 2)
89-98
-
92
Gordon B M, Fishbein M C, Levi D S.
Polytetrafluoroethylene-covered stents in the venous and
arterial system: angiographic and pathologic findings in a swine model.
Cardiovasc Pathol.
2008;
17 (4)
206-211
-
93
Falcão S C, Coelho A R, Evêncio Neto J.
Biomechanical evaluation of microbial cellulose (Zoogloea
sp.) and expanded polytetrafluoroethylene membranes as implants in repair of
produced abdominal wall defects in rats.
Acta Cir Bras.
2008;
23 (2)
184-191
-
94
Chiang C K, Druy M A, Gau S C. et al .
Synthesis of highly conducting films of derivatives of
polyacetylene, (CH)x.
J Am Chem Soc.
1978;
100
1013-1015
-
95 Skotheim T A. Handbook of Conducting Polymers Vol.
1 & 2. New York; Marcel Dekker 1986
-
96
Rehahn M.
Elektrisch leitfähige Kunststoffe.
Chem unserer Zeit.
2003;
37
18-30
-
97
Ferrer-Anglada N, Gomis V, El-Hachemi Z. et al .
Carbon nanotube based composites for electronic applications:
CNT–conducting polymers, CNT–Cu.
Phys Stat Sol.
2006;
203
1082-1087
-
98
Lee J Y, Lee J W, Schmidt C E.
Neuroactive conducting scaffolds: nerve growth factor
conjugation on active ester-functionalized polypyrrole.
J R Soc Interface.
2008;
Dec 9. [Epub ehead of print]
-
99
Haggerty H S, Lusted H S.
Histological reaction to polyimide films in the cochlea.
Acta Otolaryngol.
1989;
107 (1 – 2)
13-22
-
100
Blach-Watson J A, Watson G S, Brown C L, Myhra S.
UV-patterning of polyimide: Differentiation and
characterization of surface chemistry and structure.
Appl Surf Sci.
2004;
235
164-169
-
101
Nguyen L TT, Nguyen H N, La T HT.
Synthesis and characterization of a photosensitive polyimide
precursor and its photocuring behavior for lithography applications.
Optical Mater.
2007;
29
610-618
-
102
Jiang X, Li H, Wang H, Shi Z, Yin J.
A novel negative photoinitiator-free photosensitive
polyimide.
Polymer.
2006;
47
2942-2945
-
103
Hasegawa M, Horie K.
Photophysics, photochemistry, and optical properties of
polyimides.
Prog Polym Sci.
2001;
26
259-335
-
104
Lee K K, He J, Singh A. et al .
Polyimide-based intracortical neural implant with improved
structural stiffness.
J Micromech Microeng.
2004;
14
32-37
-
105
Yeager J D, Phillips D J, Rector D M, Bahr D F.
Characterization of flexible ECoG electrode arrays for
chronic recording in awake rats.
J Neurosci Methods.
2008;
173 (2)
279-285
-
106
Besch D, Sachs H, Szurman P. et al .
Extraocular surgery for implantation of an active subretinal
visual prosthesis with external connections: feasibility and outcome in seven
patients.
Br J Ophthalmol.
2008;
92 (10)
1361-1368
-
107
Polikov V S, Tresco P A, Reichert W M.
Response of brain tissue to chronically implanted neural
electrodes.
J Neurosci Methods.
2005;
148
1-18
-
108
Rousche P J, Pellinen D S, Pivin Jr D P. et al .
Flexible polyimide-based intracortical electrode arrays with
bioactive capability.
IEEE Trans Biomed Eng.
2001;
48
361-371
-
109
Kim Y-T, Hitchcock R W, Bridge M J, Tresco P A.
Chronic response of adult rat brain tissue to implants
anchored to the skull.
Biomaterials.
2004;
25
2229-2237
-
110
Vanden Bulcke M, Baert K, Beyne E. et al .
Active electrode arrays by chip embedding in a flexible
silicone carrier.
Conf Proc IEEE Eng Med Biol Soc.
2006;
1
2811-2815
-
111
Schwahn H N, Gekeler F, Kohler K. et al .
Studies on the feasibility of a subretinal visual prosthesis:
data from Yucatan micropig and rabbit.
Graefes Arch Clin Exp Ophthalmol.
2001;
239 (12)
961-967
-
112
Brors D, Aletsee C, Schwager K. et al .
Interaction of spiral ganglion neuron processes with
alloplastic materials in vitro (1).
Hear Res.
2002;
167 (1 – 2)
110-121
-
113
Reich U, Mueller P P, Fadeeva E. et al .
Differential fine-tuning of cochlear implant material-cell
interactions by femtosecond laser microstructuring.
J Biomed Mater Res B Appl Biomater.
2008;
87 (1)
146-153
-
114
Reich U, Reuter G, Fadeeva E. et al .
Gerichtetes Wachstum neuronaler Zellen auf
mikrostrukturiertem Implantatmaterial.
Biomaterialien.
2007;
8 (3)
162
-
115
Wolfram T, Spatz J P, Burgess R W.
Cell adhesion to agrin presented as a nanopatterned substrate
is consistent with an interaction with the extracellular matrix and not
transmembrane adhesion molecules.
BMC Cell Biol.
2008; Dec 4;
9 (1)
64. [Epub ahead of print]
-
116
Selhuber-Unkel C, Loacutepez-Garciacutea M, Kessler H, Spatz J P.
Cooperativity in adhesion cluster formation during initial
cell adhesion.
Biophys J.
2008;
95 (11)
5424-5431
-
117
Cavalcanti-Adam E A, Volberg T, Micoulet A. et al .
Cell spreading and focal adhesion dynamics are regulated by
spacing of integrin ligands.
Biophys J.
2007;
92 (8)
2964-2974
-
118
Larsson C, Emanuelsson L, Thomsen P. et al .
Bone response to surface modified titanium implants –
studies on the tissue response after 1 year to machined and electropolished
implants with different oxide thicknesses.
J Mater Sci Mater Med.
1997;
8 (12)
721-729
-
119
Le Gueacutehennec L, Soueidan A, Layrolle P, Amouriq Y.
Surface treatments of titanium dental implants for rapid
osseointegration.
Dental Materials.
2006;
23 (7)
844-854
-
120
Anselme K, Bigerelle M, Noel B, Iost A, Hardouin P.
Effect of grooved titanium substratum on human osteoblastic
cell growth.
J Biomed Mater Res.
2002;
60
529-540
-
121
Zou J, Asukas J, Inha T. et al .
Biocompatibility of different biopolymers after being
implanted into the rat cochlea.
Otol Neurotol.
2008;
29 (5)
714-719
-
122
Ryan A F, Wittig J, Evans A, Dazert S, Mullen L.
Environmental micro-patterning for the study of spiral
ganglion neurite guidance.
Audiol Neurootol.
2006;
11 (2)
134-143
-
123
Vasita R, Katti D S.
Growth factor-delivery systems for tissue engineering: a
materials perspective.
Expert Rev Med Devices.
2006;
3 (1)
29-47
-
124
Sachse A, Wagner A, Keller M. et al .
Osteointegration of hydroxyapatite-titanium implants coated
with nonglycosylated recombinant human bone morphogenetic protein-2 (BMP-2) in
aged sheep.
Bone.
2005;
37 (5)
699-710
-
125
Seeherman H, Wozney J M.
Delivery of bone morphogenetic proteins for orthopedic tissue
regeneration.
Cytokine Growth Factor Rev.
2005;
16 (3)
329-345
-
126
Gunn J, Cumberland D.
Stent coatings and local drug delivery: State of the
art.
European Heart Journal.
1999;
20
1693-1700
-
127
Stone G W, Moses J W, Ellis S G. et al .
Safety and efficacy of sirolimus- and paclitaxeleluting
coronary stents.
N Engl J Med.
2007;
356
998-1008
-
128
Silber S, Borggrefe M, Böhm M. et al .
Positionspapier der Deutschen Gesellschaft für
Kardiologie (DGK) zur Wirksamkeit und Sicherheit von Medikamente freisetzenden
Koronarstents (DES).
Der Kardiologe.
2007;
1
84-111
-
129
Li H, Corrales C E, Edge A, Heller S.
Stem cells as therapy for hearing loss.
Trends Mol Med.
2004;
10 (7)
309-315
-
130
Senn P, Oshima K, Teo D, Grimm C, Heller S.
Robust postmortem survival of murine vestibular and cochlear
stem cells.
J Assoc Res Otolaryngol.
2007;
8 (2)
194-204
-
131
Martinez-Monedero R, Oshima K, Heller S, Edge A S.
The potential role of endogenous stem cells in regeneration
of the inner ear.
Hear Res.
2007;
227 (1 – 2)
48-52
-
132
Senn P, Heller S.
Stem-cell-based approaches for treating inner ear
diseases.
HNO.
2008;
56 (1)
21-26
-
133
Juhn A, Rybak L.
Labyrinthine barriers and cochlear homeostasis.
Acta Otolaryngol.
1981;
91
529-534
-
134
Juhn S.
Barrier systems in the inner ear.
Acta Otolaryngol Suppl.
1988;
458
79-83
-
135
Swan E E, Mescher M J, Sewell W F, Tao S L, Borenstein J T.
Inner ear drug delivery for auditory applications.
Adv Drug Deliv Rev.
2008;
60 (15)
1583-1599
-
136
Garnham C, Reetz G, Jolly C. et al .
Drug delivery to the cochlea after implantation:
consideration of the risk factors.
Cochlear Implants Int.
2006;
6
12-14
-
137
Pettingill L N, Richardson R T, Wise A K, O'Leary S, Shepherd R K.
Neurotrophic factors and neural prostheses: potential
clinical applications based upon findings in the auditory system.
IEEE Trans Biomed Eng.
2007;
54
1-5
-
138
Duan M L, Ulfendahl M, Laurell G. et al .
Protection and treatment of sensorineural hearing disorders
caused by exogeous factors: experimental findings and potential clinical
application.
Hear Res.
2002;
169
169-178
-
139
Hochmair I, Nopp P, Jolly C N. et al .
Med-el cochlear implants: state of the art and a glimpse into
the future.
Trends Amplif.
2006;
10
201-220
-
140
Paasche G, Gibson P, Averbeck T. et al .
Technical report: modification of a cochlear implant
electrode for drug delivery to the inner ear.
Otol Neurotol.
2003;
24
222-227
-
141
Stöver T, Paasche G, Lenarz T. et al .
Development of a drug delivery device: using the femtosecond
laser to modify cochlear implant electrodes.
Cochlear Implants Int.
2007;
8
38-52
-
142
Huang C Q, Tykocinski M, Stathopoulos D, Cowan R.
Effects of steroids and lubricants on electrical impedance
and tissue response following cochlear implantation.
Cochlear Implants Int.
2007;
8 (3)
123-147
-
143
Vivero R J, Joseph D E, Angeli S. et al .
Dexamethasone base conserves hearing from electrode
trauma-induced hearing loss.
Laryngoscope.
2008;
118 (11)
2028-2035
-
144
Fetoni A R, Ferraresi A, Greca C L. et al .
Antioxidant protection against acoustic trauma by
coadministration of idebenone and vitamin E.
Neuroreport.
2008;
19 (3)
277-281
-
145
Kim S J, Jeong H J, Myung N Y. et al .
The protective mechanism of antioxidants in cadmium-induced
ototoxicity in vitro and in vivo.
Environ Health Perspect.
2008;
116 (7)
854-862
-
146
Maruyama J, Miller J M, Ulfendahl M.
Glial cell line-derived neurotrophic factor and antioxidants
preserve the electrical responsiveness of the spiral ganglion neurons after
experimentally induced deafness.
Neurobiol Dis.
2008;
29 (1)
14-21
-
147
Maruyama J, Yamagata T, Ulfendahl M. et al .
Effects of antioxidants on auditory nerve function and
survival in deafened guinea pigs.
Neurobiol Dis.
2007;
25 (2)
309-318
-
148
Schindler R A, Gladstone H B, Scott N. et al .
Enhanced preservation of the auditory nerve following
cochlear perfusion with nerve growth factors.
Am J Otol.
1995;
16 (3)
304-309
-
149
Ernfors P, Duan M L, ElShamy W M, Canlon B.
Protection of auditory neurons from aminoglycoside toxicity
by neurotrophin-3.
Nat Med.
1996;
2 (4)
463-467
-
150
Staecker H, Kopke R, Malgrange B. et al .
NT-3 and/or BDNF therapy prevents loss of auditory neurons
following loss of hair cells.
Neuroreport.
1996;
7 (4)
889-894
-
151
Miller J M, Chi D H, O'Keeffe L J. et al .
Neurotrophins can enhance spiral ganglion cell survival after
inner hair cell loss.
Int J Dev Neurosci.
1997;
15 (4 – 5)
631-643
-
152
Ylikoski J, Pirvola U, Virkkala J. et al .
Guinea pig auditory neurons are protected by glial cell
line-derived growth factor from degeneration after noise trauma.
Hear Res.
1998;
124 (1 – 2)
17-26
-
153
Kuang R, Hever G, Zajic G. et al .
Glial cell line-derived neurotrophic factor. Potential for
otoprotection.
Ann N Y Acad Sci.
1999;
884
270-291
-
154
Scheper V, Paasche G, Miller J M. et al .
Effects of delayed treatment with combined GDNF and
continuous electrical stimulation on spiral ganglion cell survival in deafened
guinea pigs.
J Neurosci Res.
2008;
Dec 15. [Epub ahead of print]
-
155
Yagi M, Kanzaki S, Kawamoto K. et al .
Spiral ganglion neurons are protected from degeneration by
GDNF gene therapy.
J Assoc Res Otolaryngol.
2000;
1 (4)
315-325
-
156
Shoji F, Miller A L, Mitchell A. et al .
Differential protective effects of neurotrophins in the
attenuation of noise-induced hair cell loss.
Hear Res.
2000;
146 (1 – 2)
134-142
-
157
Shoji F, Yamasoba T, Magal E. et al .
Glial cell line-derived neurotrophic factor has a dose
dependent influence on noise-induced hearing loss in the guinea pig
cochlea.
Hear Res.
2000;
142 (1 – 2)
41-55
-
158
Shinohara T, Bredberg G, Ulfendahl M. et al .
Neurotrophic factor intervention restores auditory function
in deafened animals.
Proc Natl Acad Sci USA.
2002;
99 (3)
1657-1660
-
159
Kanzaki S, Stover T, Kawamoto K. et al .
Glial cell line-derived neurotrophic factor and chronic
electrical stimulation prevent VIII cranial nerve degeneration following
denervation.
J Comp Neurol.
2002;
454 (3)
350-360
-
160
Nakaizumi T, Kawamoto K, Minoda R, Raphael Y.
Adenovirus-mediated expression of brain-derived neurotrophic
factor protects spiral ganglion neurons from ototoxic damage.
Audiol Neurootol.
2004;
9 (3)
135-143
-
161
Gillespie L N, Clark G M, Bartlett P F, Marzella P L.
BDNF-induced survival of auditory neurons in vivo: Cessation
of treatment leads to accelerated loss of survival effects.
J Neurosci Res.
2003;
71 (6)
785-790
-
162
Wright T J, Mansour S L.
FGF signaling in ear development and innervation.
Curr Top Dev Biol.
2003;
57
225-259
-
163
Bibel M, Barde Y A.
Neurotrophins: key regulators of cell fate and cell shape in
the vertebrate nervous system.
Genes Dev.
2000;
14 (23)
2919-2937
-
164
Pirvola U, Ylikoski J.
Neurotrophic factors during inner ear development.
Curr Top Dev Biol.
2003;
57
207-223
-
165
Chao M V, Bothwell M.
Neurotrophins: to cleave or not to cleave.
Neuron.
2002;
33 (1)
9-12
-
166
Fritzsch B, Tessarollo L, Coppola E, Reichardt L F.
Neurotrophins in the ear: their roles in sensory neuron
survival and fiber guidance.
Prog Brain Res.
2004;
146
265-278
-
167
Roehm P C, Hansen M R.
Strategies to preserve or regenerate spiral ganglion
neurons.
Curr Opin Otolaryngol Head Neck Surg.
2005;
13 (5)
294-300
-
168
Baloh R H, Gorodinsky A, Golden J P. et al .
GFRalpha3 is an orphan member of the GDNF/neurturin/persephin
receptor family.
Proc Natl Acad Sci USA.
1998;
95 (10)
5801-5806
-
169
Nishino J, Mochida K, Ohfuji Y. et al .
GFRalpha3, a component of the artemin receptor, is required
for migration and survival of the superior cervical ganglion.
Neuron.
1999;
23 (4)
725-736
-
170
Enomoto H, Crawford P A, Gorodinsky A. et al .
RET signaling is essential for migration, axonal growth and
axon guidance of developing sympathetic neurons.
Development.
2001;
128 (20)
3963-3974
-
171
Russo V C, Schütt B S, Andaloro E. et al .
Insulin-like growth factor binding protein-2 binding to
extracellular matrix plays a critical role in neuroblastoma cell proliferation,
migration, and invasion.
Endocrinology.
2005;
146 (10)
4445-4455
-
172
Camarero G, Leon Y, Gorospe I. et al .
Insulin-like growth factor 1 is required for survival of
transit-amplifying neuroblasts and differentiation of otic neurons.
Dev Biol.
2003;
262 (2)
242-253
-
173
Böttner M, Krieglstein K, Unsicker K.
The transforming growth factor-betas: structure, signaling,
and roles in nervous system development and functions.
J Neurochem..
2000;
75 (6)
2227-2240
-
174
Assoian R K, Komoriya A, Meyers C A, Miller D M, Sporn M B.
Transforming growth factor-beta in human platelets.
Identification of a major storage site, purification, and
characterization.
J Biol Chem.
1983;
258 (11)
7155-7160
-
175
McLennan I S, Koishi K.
The transforming growth factor-betas: multifaceted regulators
of the development and maintenance of skeletal muscles, motoneurons and Schwann
cells.
Int J Dev Biol.
2002;
46 (4)
559-567
-
176
Weerda H G, Gamberger T I, Siegner A, Gjuric M, Tamm E R.
Effects of transforming growth factor-beta1 and basic
fibroblast growth factor on proliferation of cell cultures derived from human
vestibular nerve schwannoma.
Acta Otolaryngol.
1998;
118 (3)
337-343
-
177
Diensthuber M, Brandis A, Lenarz T, Stöver T.
Co-expression of transforming growth factor-beta1 and glial
cell line-derived neurotrophic factor in vestibular schwannoma.
Otol Neurotol.
2004;
25 (3)
359-365
-
178
Atar O, Avraham K B.
Therapeutics of hearing loss: expectations vs reality.
Drug Discov Today.
2005;
10 (19)
1323-1330
-
179
Holley M C.
Keynote review: The auditory system, hearing loss and
potential targets for drug development.
Drug Discov Today.
2005;
10 (19)
1269-1282
-
180
Bowers W J, Chen X, Guo H. et al .
Neurotrophin-3 transduction attenuates cisplatin spiral
ganglion neuron ototoxicity in the cochlea.
Mol Ther.
2002;
6 (1)
12-18
-
181
Chen X, Frisina R D, Bowers W J. et al .
HSV amplicon-mediated neurotrophin-3 expression protects
murine spiral ganglion neurons from cisplatin-induced damage.
Mol Ther.
2001;
3 (6)
958-963
-
182
Ghezzi P, Brines M.
Erythropoietin as an antiapoptotic, tissue-protective
cytokine.
Cell Death Differ.
2004;
11 (Suppl 1)
37-44
-
183
Brines M, Cerami A.
Emerging biological roles for erythropoietin in the nervous
system.
Nat Rev Neurosci.
2005;
6
484-494
-
184
Krantz S B.
Erythropoietin.
Blood.
1991;
77 (3)
419-434
-
185
Arishima Y, Setogushi T, Yamaura I, Yone K, Komiya S.
Preventive effect of erythropoietin on spinal cord cells
following acute traumatic injury in rats.
SPINE.
2006;
21
2432-2438
-
186
Viviani B, Bartesaghi S, Corsini E. et al .
Erythropoietin protects primary hippocampal neurons
increasing the expression of brain-derived neurotrophic factor.
J Neurochem.
2005;
93 (2)
412-421
-
187
Berkingali N, Warnecke A, Gomes P. et al .
Neurite outgrowth on cultured spiral ganglion neurons induced
by erythropoietin.
Hear Res.
2008;
243 (1 – 2)
21-6
-
188
Caye-Thomasen P, Wagner N, Lidegaard Frederiksen B. et al .
Erythropoietin and erythropoietin receptor expression in the
guinea pig inner ear.
Hear Res.
2005;
203 (1 – 2)
21-27
-
189
Monge A, Nagy I, Bonabi S. et al .
The effect of erythropoietin on gentamicin-induced auditory
hair cell loss.
Laryngoscope.
2006;
116 (2)
312-316
-
190
Andreeva N, Nyamaa A, Haupt H, Gross J, Mazurek B.
Recombinant human erythropoietin prevents ischemia-induced
apoptosis and necrosis in explant cultures of the rat organ of Corti.
Neurosci Lett.
2006;
396 (2)
86-90
-
191
Malgrange B, Lefebvre P, Van de Water T R. et al .
Effects of neurotrophins on early auditory neurones in cell
culture.
Neuroreport.
1996;
7 (4)
913-917
-
192
Hegarty J L, Kay A R, Green S H.
Trophic support of cultured spiral ganglion neurons by
depolarization exceeds and is additive with that by neurotrophins or cAMP and
requires elevation of [Ca2+]i within a set range.
J Neurosci.
1997;
17
1959-1970
-
193
Gillespie L N, Clark G M, Bartlett P F, Marzella P L.
LIF is more potent than BDNF in promoting neurite outgrowth
of mammalian auditory neurons in vitro.
Neuroreport.
2001;
12
275-279
-
194
Mou K, Hunsberger C L, Cleary J M, Davis R L.
Synergistic effects of BDNF and NT-3 on postnatal spiral
ganglion neurons.
J Comp Neurol.
1997;
386
529-539
-
195
Marzella P L, Gillespie L N, Clark G M, Bartlett P F, Kilpatrick T J.
The neurotrophins act synergistically with LIF and members of
the TGF-beta superfamily to promote the survival of spiral ganglia neurons in
vitro.
Hear Res.
1999;
138
73-80
-
196
Wefstaedt P, Scheper V, Lenarz T, Stöver T.
Brain-derived neurotrophic factor/glial cell line-derived
neurotrophic factor survival effects on auditory neurons are not limited by
dexamethasone.
Neuroreport.
2005;
16 (18)
2011-2014
-
197
Qun L X, Pirvola U, Saarma M, Ylikoski J.
Neurotrophic factors in the auditory periphery.
Ann N Y Acad Sci.
1999;
884
292-304
-
198 Wefstaedt P. Dissertation: Untersuchungen zu trophischen und protektiven
Effekten neurotropher Faktoren (Brain-derived neurotrophic factor, Glial cell
line-derived neurotrophic factor), des Glukocorticoids Dexamethason sowie
elektrischer Stimulation auf kultivierte Spiralganglienzellen der Ratte. (Aus
dem Institut für Zoologie der Tierärztlichen Hochschule Hannover und
der Klinik für Hals-Nasen-Ohren-Heilkunde der Medizinischen Hochschule
Hannover.) 2006
-
199
Hartnick C J, Staecker H, Malgrange B. et al .
Neurotrophic effects of BDNF and CNTF, alone and in
combination, on postnatal day 5 rat acoustic ganglion neurons.
J Neurobiol.
1996;
30
246-254
-
200
Shah S B, Gladstone H B, Williams H, Hradek G T, Schindler R A.
An extended study: protective effects of nerve growth factor
in neomycin-induced auditory neural degeneration.
Am J Otol.
1995;
16 (3)
310-314
-
201
Gillespie L N, Clark G M, Marzella P L.
Delayed neurotrophin treatment supports auditory neuron
survival in deaf guinea pigs.
Neuroreport.
2004;
15 (7)
1121-1125
-
202
Gillespie L N, Shepherd R K.
Clinical application of neurotrophic factors: the potential
for primary auditory neuron protection.
Eur J Neurosci.
2005;
22 (9)
2123-2133
-
203 Scheper V. Dissertation: Elektrophysiologische und histologische
Untersuchungen zum protektiven Effekt von Glial cell line-derived neurotrophic
factor, Brain-derived neurotrophic factor, Dexamethason und Elektrostimulation
auf Spiralganglienzellen ertaubter Meerschweinchen. (Aus dem Institut für
Zoologie der Tierärztlichen Hochschule Hannover und der Klinik für
Hals-Nasen-Ohren-Heilkunde der Medizinischen Hochschule Hannover.) 2007
-
204
Miller J M, Le Prell C G, Prieskorn D M. et al .
Delayed neurotrophin treatment following deafness rescues
spiral ganglion cells from death and promotes regrowth of auditory nerve
peripheral processes: effects of brain-derived neurotrophic factor and
fibroblast growth factor.
J Neurosci Res.
2007;
85 (9)
1959-1969
-
205
Wise A K, Richardson R, Hardman J, Clark G, O'Leary S.
Resprouting and survival of guinea pig cochlear neurons in
response to the administration of the neurotrophins brain-derived neurotrophic
factor and neurotrophin-3.
J Comp Neurol.
2005;
487 (2)
147-165
-
206
Yamagata T, Miller J M, Ulfendahl M. et al .
Delayed neurotrophic treatment preserves nerve survival and
electrophysiological responsiveness in neomycin-deafened guinea pigs.
J Neurosci Res.
2004;
78 (1)
75-86
-
207
Shepherd R K, Coco A, Epp S B, Crook J M.
Chronic depolarization enhances the trophic effects of
brain-derived neurotrophic factor in rescuing auditory neurons following a
sensorineural hearing loss.
J Comp Neurol.
2005;
486 (2)
145-158
-
208
Thorne M, Salt A N, DeMott J E. et al .
Cochlear fluid space dimensions for six species derived from
reconstructions of three-dimensional magnetic resonance images.
Laryngoscope.
1999;
109
1661-1668
-
209
Salt A N, Rask-Andersen H.
Responses of the endolymphatic sac to perilymphatic
injections and withdrawals: evidence for the presence of a one-way valve.
Hear Res.
2004;
191 (1 – 2)
90-100
-
210
Mynatt R, Hale S A, Gill R M, Plontke S K, Salt A N.
Demonstration of a longitudinal concentration gradient along
scala tympani by sequential sampling of perilymph from the cochlear apex.
J Assoc Res Otolaryngol.
2006;
7 (2)
182-193
-
211
Plontke S K, Salt A N.
Simulation of application strategies for local drug delivery
to the inner ear.
ORL J Otorhinolaryngol Relat Spec.
2006;
68 (6)
386-392
-
212
Plontke S K, Siedow N, Wegener R, Zenner H P, Salt A N.
Cochlear pharmacokinetics with local inner ear drug delivery
using a three-dimensional finite-element computer model.
Audiol Neurootol.
2007;
12 (1)
37-48
-
213
Prieskorn D M, Miller J M.
Technical report: chronic and acute intracochlear infusion in
rodents.
Hear Res.
2000;
140
212-215
-
214
Paasche G, Bögel L, Leinung M, Lenarz T, Stöver T.
Substance distribution in a cochlea model using different
pump rates for cochlear implant drug delivery electrode prototypes.
Hear Res.
2006;
212 (1 – 2)
74-82
-
215
Schierholz J M, Lucas L J, Rump A, Pulverer G.
Efficacy of silver-coated medical devices.
J Hosp Infect.
1998;
40 (4)
257-262
-
216
Nair L S, Laurencin C T.
Nanofibers and nanoparticles for orthopaedic surgery
applications.
J Bone Joint Surg Am.
2008;
90 (Suppl 1)
128-131
-
217
Zou J, Saulnier P, Perrier T. et al .
Distribution of lipid nanocapsules in different cochlear cell
populations after round window membrane permeation.
J Biomed Mater Res B Appl Biomater.
2008;
87 (1)
10-18
-
218
Tamura T, Kita T, Nakagawa T. et al .
Drug delivery to the cochlea using PLGA nanoparticles.
Laryngoscope.
2005;
115 (11)
2000-2005
-
219
Rejali D, Lee V A, Abrashkin K A, Humayun N, Swiderski D L, Raphael Y.
Cochlear implants and ex vivo BDNF gene therapy protect
spiral ganglion neurons.
Hear Res.
2007;
228 (1 – 2)
180-187
Prof. Dr. med. Timo Stöver
Klinik und Poliklinik für Hals-, Nasen-, Ohrenheilkunde, Med.
Hochschule Hannover
Carl-Neuberg-Straße 1
30625 Hannover
Email: stoever.timo@mh-hannover.de