Zusammenfassung
Die Hauthomeostase wird von epidermalen Stammzellen gesichert, welche sich selbsterneuern und Tochterzellen generieren, die eine terminale Differenzierung ausweisen. Mehrere spezialisierte Hautstammzellenpopulationen sind bereits nachgewiesen worden. Genetische Markierungsstudien wiesen multipotente Stammzellen im Haarfollikel auf, welche die Regeneration der Haarfollikel unterstützen, aber für den Aufbau der interfollikulären Epidermis nicht verantwortlich sind. Die Letztere besitzt eine eigene Stammzellpopulation. Bei Gefährdung der Hautintegrität, z. B. nach Verbrennung, übernehmen jedoch Haarfollikelstammzellen die epidermale Regeneration. Andererseits sind die Zellen der Wulstregion, die ersten adulten Hautstammzellen, die identifiziert wurden, fähig, Haarfollikel, interfollikuläre Epidermis und Talgdrüsen zu bilden. Außerdem können sich aus Zellen der Wulstregion – mindestens in den Haarfollikeln der Maus – auch nichtepitheliale Zellen entwickeln, welche auf einen abstammungsunabhängigen, pluripotenten Charakter der Wulstregion hinweisen. Multipotente Zellen (hautabstammende Progenitorzellen) sind in der menschlichen Dermis vorhanden. Dermale Stammzellen stellen 0,3 % der Vorhautfibroblasten dar. Progenitorzellen existieren auch in den Talgdrüsen und sind in der Lage, sowohl Talgdrüsenzellen als auch Zellen der interfollikulären Epidermis zu generieren. Die unterschiedliche Selbsterneuerung und Abstammungsdifferenzierung der Stammzellen der Haut machen diese Zellen für die regenerative Medizin, die Gewebeersatzforschung, die Gentherapie und die zellbasierte Therapie mit autologen adulten Stammzellen attraktiv.
Abstract
Skin integrity is maintained by epidermal stem cells, which self-renew and generate daughter cells that undergo terminal differentiation. Existence of several distinct skin stem cell populations has been reported. Genetic labelling studies detected multipotent stem cells of the hair follicle, which support regeneration of hair follicles but is not responsible for maintaining interfollicular epidermis. The latter exhibits a distinct stem cell population. However, whenever skin integrity is severely compromised, e. g. after burns, hair follicle stem cells remodel epidermal regeneration. On the other hand, bulge cells, the first adult stem cells of the skin to have been identified, are capable of forming hair follicles, interfollicular epidermis and sebaceous glands. In addition – at least in mouse hair follicles – they can also give rise to non-epithelial cells, indicating a lineage-independent pluripotent character. Multipotent cells (skin-derived precursor cells) are present in human dermis. Dermal stem cells represent 0.3 % among human dermal foreskin fibroblasts. A resident pool of progenitor cells exists within the sebaceous glands, which is able to differentiate into both sebocytes and interfollicular epidermis. The self-renewal and multi-lineage differentiation of skin stem cells make these cells attractive for regenerative medicine, tissue repair, gene therapy and cell-based therapy with autologous adult stem cells.
Literatur
1
Hübner K, Fuhrmann G, Christenson L K, Kehler J, Reinbold R, De La Fuente R, Wood J, Strauss 3rd J F, Boiani M, Schöler H R.
Derivation of oocytes from mouse embryonic stem cells.
Science.
2003;
300
1251-1256
2
Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones J M.
Embryonic stem cell lines derived from human blastocysts.
Science.
1998;
282
1145-1147
3
Adjaye J, Huntriss J, Herwig R, BenKahla A, Brink T C, Wierling C, Hultschig C, Groth D, Yaspo M L, Picton H M, Gosden R G, Lehrach H.
Primary differentiation in the human blastocyst: comparative molecular portraits of inner cell mass and trophectoderm cells.
Stem Cells.
2005;
23
1514-1525
4
Martin G R.
Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.
Proc Natl Acad Sci USA.
1981;
78
7634-7638
5
Smith A G, Heath J K, Donaldson D D, Wong G G, Moreau J, Stahl M, Rogers D.
Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides.
Nature.
1988;
336
688-690
6
Schnieke A E, Kind A J, Ritchie W A, Mycock K, Scott A R, Ritchie M, Wilmut I, Colman A, Campbell K H.
Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts.
Science.
1997;
278
2130-2133
7
Mitalipov S M, Zhou Q, Byrne J A, Ji W Z, Norgren R B, Wolf D P.
Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling.
Hum Reprod.
2007;
22
2232-2242
8
Sharpless N E, DePinho R A.
How stem cells age and why this makes us grow old.
Nat Rev Mol Cell Biol.
2007;
8
703-713
9
Moore K A, Lemischka I R.
Stem cells and their niches.
Science.
2006;
311
1880-1885
10
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S.
Induction of pluripotent stem cells from adult human fibroblasts by defined factors.
Cell.
2007;
131
861-872
11
Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A.
Induced pluripotent stem cell lines derived from human somatic cells.
Science.
2007;
318
1917-1920
12
Hanna J, Wernig M, Markoulaki S, Sun C W, Meissner A, Cassady J P, Beard C, Brambrink T, Wu L C, Townes T M, Jaenisch R.
Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin.
Science.
2007;
318
1920-1923
13
Fuchs E.
Skin stem cells: rising to the surface.
J Cell Biol.
2008;
180
273-284
14
Levy V, Lindon C, Zheng Y, Harfe B D, Morgan B A.
Epidermal stem cells arise from the hair follicle after wounding.
Dev Cell.
2007;
9
855-861
15
Ito M, Kizawa K, Hamada K, Cotsarelis G.
Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen.
Differentiation.
2004;
72
548-557
16
Niemann C, Watt F M.
Designer skin: lineage commitment in postnatal skin.
Trends Cell Biol.
2002;
12
185-192
17
Potten C S.
The epidermal proliferative unit: the possible role of the central basal cell.
Cell Tissue Kinet.
1974;
7
77-88
18
Clayton E, Doupe D P, Klein A M, Winton D J, Simons B D, Jones P H.
A single type of progenitor cell maintains normal epidermis.
Nature.
2007;
446
185-189
19
Jones P H, Watt F M.
Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression.
Cell.
1993;
73
713-724
20
Li A, Simmons P J, Kaur P.
Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype.
Proc Natl Acad Sci USA.
1998;
95
3902-3907
21
Lowell S, Jones P, LeRoux I, Dunne J, Watt F M.
Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters.
Curr Biol.
2000;
10
491-500
22
Ohyama M, Terunuma A, Tock C L, Radonovich M F, Pise-Masison C A, Hopping S B, Brady J N, Udey M C, Vogel J C.
Characterization and isolation of stem cell-enriched human hair follicle bulge cells.
J Clin Invest.
2006;
116
249-260
23
Legg J, Lensen U B, Broad S, Leigh I, Watt F M.
Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis.
Development.
2003;
130
6049-6063
24
Jensen K B, Watt F M.
Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence.
Proc Natl Acad Sci USA.
2006;
103
11 958-11 963
25
Tiede S, Kloepper J E, Bodo E, Tiwari S, Kruse C, Paus R.
Hair follicle stem cells: Walking the maze.
Eur J Cell Biol.
2007;
86
355-376
26
Paus R, Foitzik K.
In search of the ‘‘hair cycle clock’’: a guided tour.
Differentiation.
2004;
72
489-511
27
Cotsarelis G, Sun T T, Lavker R M.
Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis.
Cell.
1990;
61
1329-1337
28
Fuchs E, Horsley V.
More than one way to skin ….
Genes & Devel.
2008;
22
976-985
29
Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris R J, Cotsarelis G.
Stem cells of the hair follicle contribute to wound repair but not to homeostasis of the epidermis.
Nat Med.
2005;
11
1351-1354
30
Lyle S, Christofidou-Solomidou M, Liu Y, Elder D E, Albelda S, Cotsarelis G.
Human hair follicle bulge cells are biochemically distinct and possess an epithelial stem cell phenotype.
J Invest Dermatol Symp Proc.
1999;
4
296-301
31
Cotsarelis G.
Epithelial stem cells: a folliculocentric view.
J Invest Dermatol.
2006;
126
459-468
32
Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y.
Morphogenesis and renewal of hair follicles from adult multipotent stem cells.
Cell.
2001;
104
233-245
33
Liu Y, Lyle S, Yang Z, Cotsarelis G.
Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge.
J Invest Dermatol.
2003;
121
963-968
34
Hoffman R M.
The pluripotency of hair follicle stem cells.
Cell Cycle.
2006;
5
232-233
35
Roh C, Tao Q, Photopoulos C, Lyle S.
In vitro differences between keratinocyte stem cells and transitamplifying cells of the human hair follicle.
J Invest Dermatol.
2005;
125
1099-1105
36
Lyle S, Christofidou-Solomidou M, Liu Y, Elder D E, Albelda S, Cotsarelis G.
The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells.
J Cell Sci.
1998;
111
3179-3188
37
vanGenderen C, Okamura R M, Farinas I, Quo R G, Parslow T G, Bruhn L, Grosschedl R.
Development of several organs that require inductive epithelial–mesenchymal interactions is impaired in LEF-1-deficient mice.
Genes Dev.
1994;
8
2691-2703
38
Gat U, DasGupta R, Degenstein L, Fuchs E.
De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin.
Cell.
1998;
95
605-614
39
O’Shaughnessy R F, Yeo W, Gautier J, Jahoda C AB, Christiano A M.
The WNT signalling modulator, wise, is expressed in an interaction-dependent manner during hair-follicle cycling.
J Invest Dermatol.
2004;
123
613-621
40
Nguyen H, Rendl M, Fuchs E.
Tcf3 governs stem cell features and represses cell fate determination in skin.
Cell.
2006;
127
171-183
41
Artuc M, Steckelings U M, Henz B M.
Mast cell-fibroblast interactions: human mast cells as source and inducers of fibroblast and epithelial growth factors.
J Invest Dermatol.
2002;
118
391-395
42
Werner S, Krieg T, Smola H.
Keratinocyte-fibroblast interactions in wound healing.
J Invest Dermatol.
2007;
127
998-1008
43
Stark H J, Willhauck M J, Mirancea N, Boehnke K, Nord I, Breitkreutz D, Pavesio A, Boukamp P, Fusenig N E.
Authentic fibroblast matrix in dermal equivalents normalises epidermal histogenesis and dermoepidermal junction in organotypic co-culture.
Eur J Cell Biol.
2004;
83
631-645
44
Chen F G, Zhang W J, Bi D, Liu W, Wei X, Chen F F, Zhu L, Cui L, Cao Y.
Clonal analysis of nestin(-) vimentin(+) multipotent fibroblasts isolated from human dermis.
J Cell Sci.
2007;
120
2875-2883
45
Toma J G, Akhavan M, Fernandes K J, Barnabé-Heider F, Sadikot A, Kaplan D R, Miller F D.
Isolation of multipotent adult stem cells from the dermis of mammalian skin.
Nat Cell Biol.
2001;
3
778-784
46
Biernaskie J A, McKenzie I A, Toma J G, Miller F D.
Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny.
Nat Protoc.
2006;
1
2803-2812
47
Bucala R, Spiegel L A, Chesney J, Hogan M, Cerami A.
Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair.
Mol Med.
1994;
1
71-81
48
Quan T E, Cowper S, Wu S P, Bockenstedt L K, Bucala R.
Circulating fibrocytes: collagen-secreting cells of the peripheral blood.
Int J Biochem Cell Biol.
2004;
36
598-606
49
Shi C M, Cheng T M.
Differentiation of dermis-derived multipotent cells into insulin-producing pancreatic cells in vitro.
World J Gastroenterol.
2004;
10
2550-2552
50
Tobin D J, Gunin A, Magerl M, Paus R.
Plasticity and cytokinetic dynamics of the hair follicle mesenchyme during the hair growth cycle: implications for growth control and hair follicle transformations.
J Invest Dermatol Symp Proc.
2003;
8
80-86
51
Jahoda C AB, Reynolds A J.
Hair follicle dermal sheath cells: unsung participants in wound healing.
Lancet.
2001;
358
1445-1448
52
Jahoda C AB, Whitehouse C J, Reynolds A J, Hole N.
Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages.
Exp Dermatol.
2003;
12
849-859
53
Kumamoto T, Shalhevet D, Matsue H, Mummert M E, Ward B R, Jester J V, Takashima A.
Hair follicles serve as local reservoirs of skin mast cell precursors.
Blood.
2003;
102
1654-1660
54
DasGupta R, Fuchs E.
Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation.
Development.
1999;
126
4557-4568
55
Richardson G D, Arnott E C, Whitehouse C J, Lawrence C M, Reynolds A J, Hole N, Jahoda C AB.
Plasticity of rodent and human hair follicle dermal cells: implications for cell therapy and tissue engineering.
J Invest Dermatol Symp Proc.
2005;
10
180-183
56
Fernandes K J, McKenzie I A, Mill P, Smith K M, Akhavan M, Barnabe-Heider F, Biernaskie J, Junek A, Kobayashi N R, Toma J G, Kaplan D R, Labosky P A, Rafuse V, Hui C C, Miller F D.
A dermal niche for multipotent adult skin-derived precursor cells.
Nat Cell Biol.
2004;
6
1082-1093
57
Zouboulis C C.
Acne and sebaceous gland function.
Clin Dermatol.
2004;
22
360-366
58
Watt F M, Lo Celso C, Silva-Vargas V.
Epidermal stem cells: an update. Curr. Opin.
Genetics Develop.
2006;
16
518-524
59
Niemann C, Unden A B, Lyle S, Zouboulis C C, Toftgård R, Watt F M.
Indian hedgehog and beta-catenin signaling: Role in the sebaceous lineage of normal and neoplastic mammalian epidermis.
Proc Natl Acad Sci USA.
2003;
100 (suppl 1)
11873-11880
60
Lo Celso C, Berta M A, Braun K M, Frye M, Lyle S, Zouboulis C C, Watt F M.
Characterisation of bipotential epidermal progenitors derived from human sebaceous gland: contrasting roles of c-Myc and beta-catenin.
Stem Cells.
2008;
26
1241-1252
61
Selleri S, Seltmann H, Gariboldi S, Shirai Y F, Balsari A, Zouboulis C C, Rumio C.
Doxorubicin-induced alopecia is associated with sebaceous gland differentiation.
J Invest Dermatol.
2006;
126
711-720
62
Braun K M, Niemann C, Jensen U B, Sundberg J P, Silva-Vargas V, Watt F M.
Manipulation of stem cell proliferation and lineage commitment: Visualisation of label-retaining cells in wholemounts of mouse epidermis.
Development.
2003;
130
5241-5255
63
Horsley V, O’Carroll D, Tooze R, Ohinata Y, Saitou M, Obukhanych T, Nussenzweig M, Tarakhovsky A, Fuchs E.
Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland.
Cell.
2006;
126
597-609
64
Allen M, Grachtchouk M, Sheng H, Grachtchouk V, Wang A, Wei L, Liu J, Ramirez A, Metzger D, Chambon P, Jorcano J, Dlugosz A.
Hedgehog signaling regulates sebaceous gland development.
Am J Pathol.
2003;
163
2173-2178
65
Takeda H, Lyle S, Lazar A JF, Zouboulis C C, Smyth I, Watt F M.
Human sebaceous tumours harbour inactivating mutations in LEF1.
Nat Med.
2006;
12
395-397
66
Han G, Li A G, Liang Y Y, Owens P, He W, Lu S, Yoshimatsu Y, Wang D, Ten Dijke P, Lin X, Wang X J.
Smad7-induced beta-catenin degradation alters epidermal appendage development.
Dev Cell BL.
2006;
11
301-312
Prof. Dr. Christos C. Zouboulis
Klinik für Dermatologie, Venerologie und Allergologie/ Immunologisches Zentrum Städtisches Klinikum Dessau
Auenweg 38 06847 Dessau-Roßlau
eMail: christos.zouboulis@klinikum-dessau.de