References and Notes
1
Inanaga J.
Baba Y.
Hanamoto T.
Chem.
Lett.
1993,
22:
241
2a
Winterfield E.
Chem. Ber.
1964,
97:
1952
2b
Ireland RE.
Wipf P.
Xiang J.-N.
J.
Org. Chem.
1991,
56:
3572
3
Methot JL.
Roush WR.
Adv. Synth. Catal.
2004,
1035
4
Lee E.
Tae JS.
Lee C.
Park CM.
Tetrahedron Lett.
1993,
34:
4831
For a recent example, see:
5a
Inoue M.
Miyazaki K.
Ishihara Y.
Tatami A.
Ohnuma Y.
Kawada Y.
Komano K.
Yamashita S.
Lee N.
Hirama M.
J. Am. Chem. Soc.
2006,
128:
9352
For selected reviews, see:
5b
Inoue M.
Hirama M.
Acc. Chem. Res.
2004,
37:
961
5c
Marmsäter FP.
West FG.
Chem.
Eur. J.
2002,
8:
4346
6
Trost BM.
Dake GR.
J. Am. Chem. Soc.
1997,
119:
7595
7
Lu X.
Zhang C.
Xu Z.
Acc. Chem. Res.
2001,
34:
535
8 For a recent and related example,
see: Shi Y.-L.
Shi M.
Org.
Lett.
2005,
7:
3057
9a
Tejedor D.
García-Tellado F.
Marrero-Tellado JJ.
de Armas P.
Chem. Eur. J.
2003,
9:
3122
9b
Tejedor D.
González-Cruz D.
Sántos-Expósito A.
Marrero-Tellado JJ.
de Armas P.
García-Tellado F.
Chem. Eur. J.
2005,
11:
3502
9c
Gonzalez-Cruz D.
Tejedor D.
de Armas P.
Garcia-Tellado F.
Chem. Eur. J.
2007,
13:
4823
9d
Tejedor D.
Santos-Expósito A.
García-Tellado F.
Chem. Eur. J.
2007,
13:
1201
9e
Tejedor D.
López-Tosco S.
González-Platas J.
García-Tellado F.
J.
Org. Chem.
2007,
72:
5454
10
Kresge AJ.
Pruszynski P.
J. Org. Chem.
1991,
56:
4808
11 We have shown that under different
reaction conditions
1,3-dioxolane derivatives can be obtained
regardless of the catalyst used, see reference 9a.
12a
Tejedor D.
González-Cruz D.
García-Tellado F.
Marrero-Tellado JJ.
Rodríguez ML.
J.
Am. Chem. Soc.
2004,
126:
8390
12b
Tejedor D.
Santos-Expósito A.
González-Cruz D.
García-Tellado F.
Marrero-Tellado
JJ.
J.
Org. Chem.
2005,
70:
1042
13 The Et3N in CH2Cl2 proved
to be the best catalytic system.
14 Six different isomers were isolated
with relative intensities of 0.81:0.72:0.94:1.00:0.07:0.01 and identified
on the basis of their NMR spectra and the X-ray crystal structure
analysis of one of the isomers.
15 For a review of formal [3+2] cycloaddition
of propargylic substrates, see: Yamazaki S.
Chem.
Eur. J.
2008,
14:
6026
16 This is true as long as the R¹ substituent
shown in Scheme 1 is an aliphatic group. It has been shown that
activated propargylic alcohols bearing aromatic substituents isomerize
to the corresponding alkenoates in the presence of tertiary amines: Sonye JP.
Koide K.
Org.
Lett.
2006,
8:
199 ;
and references cited therein
17 Unactivated propargylic alcohols behave
as expected affording the corresponding product 1 (see
ref. 1).
18
Experimental Details
for the Et
3
N-Catalyzed
Addition of Activated Propargylic Alcohols to Methyl Propiolate: Product 2a was synthesized from 4a as
described in Scheme
[³]
.
A cooled (0 ˚C) solution of propargylic alcohol and methyl
propiolate (1.0 mmol of each) in CH2Cl2 (5
mL) was stirred with Et3N (0.2 mmol) until a TLC showed complete
starting material disappearance. Solvent and excess reagents were
removed under reduced pressure and the product was isolated by flash
column chromatography (silica gel, n-hexane-EtOAc). ¹H
NMR (400 MHz, CDCl3): δ = 1.30 (t, J = 7.2 Hz, 3 H), 3.69 (s, 3
H), 4.23 (q, J = 7.2 Hz, 2 H),
4.62 (s, 2 H), 5.31 (d, J = 12.5
Hz, 1 H), 7.52 (d,
J = 12.5
Hz, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 13.9, 51.3,
57.5, 62.4, 79.3, 79.7, 98.6, 152.5, 160.2, 167.3. IR (CHCl3):
3021.7, 2248.3, 1710.2, 1629.6, 1259.6, 1137.4 cm-¹.
Anal. Calcd for C10H12O5: C, 56.60;
H, 5.70. Found: C, 56.61; H, 5.65. MS: m/z (%) = 212 (21) [M+],
181 (86), 156 (95), 139 (70), 125 (50), 67 (95), 66 (100), 55 (69).
Experimental Details for the Bu
3
P-Catalyzed
Addition of Activated Propargylic Alcohols to Methyl Propiolate: Product 5a was synthesized from 4a as
described in Scheme
[4]
. A
cooled (-78 ˚C) solution of propargylic alcohol and
methyl propiolate (1.0 mmol of each) in CH2Cl2 (5
mL) was stirred with Bu3P (0.8 mmol) for a few minutes
at
-78 ˚C and allowed to react without
further cooling for 1 h (lower amounts of Bu3P slow down
the reaction while higher temperatures have a negative impact on
the overall yield). After the reaction was completed, solvent and
excess reagents were removed under reduced pressure. Product was isolated
by flash column chromatography as a mixture of two isomers (silica
gel, n-hexane-EtOAc), i.e. a
mixture of 2Z,2′Z (minor) and 2Z,2′E (major) isomers. Data for major isomer: ¹H
NMR (500 MHz, CDCl3): δ = 1.25 (t, J = 6.9 Hz, 3 H), 1.27 (t, J = 6.9 Hz, 3 H), 3.75 (s, 3
H), 4.14-4.21 (m, 4 H), 4.59 (dd, J = 2.0,
15.0 Hz, 1 H), 4.67 (dd, J = 2.1,
15.0 Hz, 1 H), 5.09 (dd, J = 2.8,
16.8 Hz, 1 H), 5.18 (dd, J = 2.7, 16.8
Hz, 1 H), 5.80 (s, 1 H), 5.90 (t, J = 2.0
Hz, 1 H), 6.27 (t, J = 2.7 Hz,
1 H). ¹³C NMR (125 MHz, CDCl3): δ = 14.06, 14.07,
52.9, 60.5, 61.0, 67.5, 71.6, 73.1, 113.1, 114.2, 117.5, 155.9,
156.0, 165.2, 165.8, 168.1. IR (CHCl3): 3017.2, 1734.8,
1711.6, 1667.7, 1374.1, 1266.1, 1228.5, 1155.9
cm-¹.
Anal. Calcd for C16H20O8: C, 56.47;
H, 5.92. Found: C, 56.43; H, 6.03. MS: m/z (%) = 340 (6.0) [M+],
295 (61), 294 (100), 166 (69), 163 (55), 77 (49), 59 (38), 51 (35).