Subscribe to RSS
DOI: 10.1055/s-0029-1185376
© Georg Thieme Verlag KG Stuttgart · New York
Isolation of Two New Prenylflavonols from Epimedium brevicornum and their Effects on Cytokine Production in vitro
Publication History
received Nov. 6, 2008
revised January 12, 2009
accepted January 18, 2009
Publication Date:
25 February 2009 (online)
Abstract
In an attempt to search for bioactive natural products, two new prenylflavonols, 2′′-hydroxy-3′′-en-anhydroicaritin (1) and 2′′-hydroxy-β-anhydroicaritin (2), were isolated from the Chinese medicinal herb Epimedium brevicornum. Their structures were determined by 1D and 2D NMR spectroscopic analysis. The effects of compounds 1 and 2 on cytokine production in vitro were investigated. Compound 1 could significantly downregulate tumor necrosis factor-α (TNF-α) production and increase interleukin-10 (IL-10) production. These results suggested that compound 1 may have anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated mouse macrophages. In addition, the biogenetic relationships among compounds 1 and 2 are discussed.
Key words
Epimedium brevicornum - Berberidaceae - prenylflavonol - anti‐inflammatory - biogenetic relationship
References
- 1 Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae .Flora reipublicae popularis sinicae. Beijing; Science Press 2001: 262
- 2 Zhang Y F, Yu Q H. The anti-inflammatory effects of total flavonoids of epimedium. J Shengyang Pharm Univ. 1999; 16 122-124
- 3 Yap S P, Shen P, Butler M S, Gong Y, Loy C J, Yong E L. New estrogenic prenylflavone from Epimedium brevicornum inhibits the growth of breast cancer cells. Planta Med. 2005; 71 114-119
- 4 Pan Y, Zhang W Y, Xia X, Kong L D. Effects of icariin on hypothalamic-pituitary-adrenal axis and cytokine levels in stressed Sprague-Dawley rats. Biol Pharm Bull. 2006; 29 2399-2403
- 5 Wu B, Yan S, Lin Y, Wang Q, Yang Y, Yang G J, Shen Z Y, Zhang W D. Metabonomic study on ageing: NMR-based investigation into rat urinary metabolites and the effect of the total flavone of Epimedium. Mol Biosyst. 2008; 4 855-861
- 6 Cai W J, Zhang X M, Huang J H. Effects of epimedium flavonoids in retarding aging of C. elegans. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2008; 28 522-525
- 7 Meng F H, Li Y B, Xiong Z L, Jiang Z M, Li F M. Osteoblastic proliferative activity of Epimdium brevicornum Maxim. Phytomedicine. 2005; 12 189-193
- 8 Chung B H, Kim J D, Kim C K. Icariin stimulates angiogenenesis by activating the MEK/ERK- and P13K/AKt/eNOS-dependent signal pathways in human endothelial cells. Biochem Biophys Res Commun. 2008; 376 404
- 9 Mizuno M, Iinuma M, Tanaka T. Flavonol glycosides in the roots of Epimedium diphyllum. Phytochemistry. 1988; 27 3645
- 10 Ding P L, Chen D F, Bastow K F, Nyarko A K, Wang X, Lee K H. Cytotoxic isoprenylated flavonoids from the roots of Sophora flavescens. Helv Chim Acta. 2004; 87 2574-2580
- 11 Guo B L, Li W K, Yu J G, Xiao P G. Brevicornin, a flavonol from Epimedium brevicornum. Phytochemistry. 1996; 41 991-992
- 12 Tian X M, Chen S Z, Li T, Tu P F. Three new isoflavonoids from the aerial parts of Ammopiptanthus mongolicus. Helv Chim Acta. 2008; 91 1015-1022
- 13 Tahara S, Ingham I L, Miztani J. Identification of an epoxy-intermediate resulting from the fungal metabolism of a prenylated isoflavone. Phytochemistry. 1989; 28 2079-2084
- 14 Tanaka M, Tahara S. Fad-dependent epoxidase as a key enzyme in fungal metabolism of prenylated flavonoids. Phytochemistry. 1997; 46 433-439
- 15 Wang H, Liao H, Ochani M, Justiniani M, Lin X C, Yang L H, Wang H C, Metz C. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004; 10 1216-1221
- 16 Reimold A M. TNF-alpha as therapeutic target: new drugs, more applications. Curr Drug Targets Inflamm Allergy. 2002; 1 377-392
- 17 Dinarello C A. Anti-cytokine therapeutics and infections. Vaccine. 2003; 21 24-34
- 18 Gérard C, Bruyns C, Marchant A, Abramowicz D, Vandenabeele P, Delvaux A, Fiers W, Goldman M, Velu T. Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia. J Exp Med. 1993; 177 547-550
- 19 Ertel W, Keel M, Steckholzer U, Trentz O. Interleukin-10 attenuates the release of proinflammatory cytokines but depresses splenocyte functions in murine endotoxemia. Arch Surg. 1996; 131 51-56
- 20 Grutz G. New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J Leukoc Biol. 2005; 77 3-15
Prof. Rong-Tao Li
Xu-Ming Deng
College of Life Science and Technology
Kunming University of Science and Technology
Kunming
Yunnan 650224
People's Republic of China
Phone: + 86 8 71 38 01 01 82 01
Fax: + 86 87 13 80 11 91
Email: rongtaolikm@yahoo.cn