Planta Med 2009; 75(11): 1209-1214
DOI: 10.1055/s-0029-1185540
Pharmacology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Effects of 2,3,4′,5-Tetrahydroxystilbene 2-O-β-D-Glucoside on Vascular Endothelial Dysfunction in Atherogenic-Diet Rats

Wei Zhang1 , Xiao-Le Xu1 , Yu-Qin Wang1 , Chun-Hua Wang1 , Wei-Zhong Zhu1
  • 1Department of Pharmacology, School of Medicine, Nantong University, Nantong, P. R. China
Weitere Informationen

Publikationsverlauf

received Nov. 25, 2008 revised February 19, 2009

accepted February 20, 2009

Publikationsdatum:
06. April 2009 (online)

Abstract

2,3,4′,5-Tetrahydroxystilbene 2-O-β-D-glucoside (TSG), an active component extracted from Polygonum multiflorum, has been found to have an anti-atherosclerotic effect. The aim of this study was to investigate whether the TSG could prevent the development of atherosclerosis through influencing endothelial function in atherogenic-diet rats and to explore the possible mechanisms. Vascular endothelial dysfunction was assessed using isolated aortic ring preparation, transmission electron microscopy of the aorta, and levels of nitrate/nitrite (NOx) in serum and aorta. Endothelial nitric oxide (NO) synthase (eNOS) and inducible NO synthase (iNOS) mRNA and protein expression were also measured. After 12 weeks treatment, TSG improved acetylcholine-induced endothelium-dependent relaxation, prevented intimal remodeling, inhibited the decreased NOx content in serum and aorta in atherogenic-diet rats. Furthermore, the observed decreased eNOS mRNA and protein expression and increased iNOS mRNA and protein expression in atherogenic-diet rats were attenuated by TSG treatment. These results suggest that TSG could restore vascular endothelial function, which may be related to its ability to prevent changes of eNOS and iNOS expression, leading to preservation of NO bioactivity.

References

  • 1 Giannotti G, Landmesser U. Endothelial dysfunction as an early sign of atherosclerosis.  Herz. 2007;  32 568-572
  • 2 Mattys K E, Bult H. Nitric oxide function in atherosclerosis.  Mediators Inflamm. 1997;  6 3-21
  • 3 Cayatte A J, Palacino J J, Horten K, Cohen R A. Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits.  Arterioscler Thromb. 1994;  14 753-759
  • 4 Kuhlencordt P J, Gyurko R, Han F, Scherrer-Crosbie M, Aretz T H, Hajjar R, Picard M H, Huang P L. Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice.  Circulation. 2001;  104 448-454
  • 5 Chatterjee A, Catravas J D. Endothelial nitric oxide (NO) and its pathophysiologic regulation.  Vascul Pharmacol. 2008;  49 134-140
  • 6 Ooboshi H, Toyoda K, Faraci F M, Lang M G, Heistad D D. Improvement of relaxation in an atherosclerotic artery by gene transfer of endothelial nitric oxide synthase.  Arterioscler Thromb Vasc Biol. 1998;  18 1752-1758
  • 7 Von der Leyen H E, Gibbons G H, Morishita R, Lewis N O, Zhang L, Nakajima M, Kaneda Y, Cooke J P, Dzau V J. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene.  Proc Natl Acad Sci USA. 1995;  92 1137-1141
  • 8 Yang P Y, Almofti M R, Lu L, Kang H, Zhang J, Li T J, Rui Y C, Sun L N, Chen W S. Reduction of atherosclerosis in cholesterol-fed rabbits and decrease of expressions of intracellular adhesion molecule-1 and vascular endothelial growth factor in foam cells by a water-soluble fraction of Polygonum multiflorum.  J Pharmacol Sci. 2005;  99 294-300
  • 9 Liu Q L, Xiao J H, Ma R, Ban Y, Wang J L. Effect of 2,3,5,4′-tetrahydroxystilbene 2-O-beta-D-glucoside on lipoprotein oxidation and proliferation of coronary arterial smooth cells.  J Asian Nat Prod Res. 2007;  9 689-697
  • 10 Zhang W, Wang C H, Li F, Zhu W Z. 2,3,4′,5-Tetrahydroxystilbene 2-O-beta-D-glucoside suppresses matrix metalloproteinase expression and inflammation in atherosclerotic rats.  Clin Exp Pharmacol Physiol. 2008;  35 310-316
  • 11 Shah D I, Singh M. Effect of demethylasterriquinone b1 in hypertension associated vascular endothelial dysfunction.  Int J Cardiol. 2007;  120 317-324
  • 12 Giovannoni G, Land J M, Keir G, Thompson E J, Heales S J. Adaptation of the nitrate reductase and Griess reaction methods for the measurement of serum nitrate plus nitrite levels.  Ann Clin Biochem. 1997;  34 193-198
  • 13 Tang F T, Qian Z Y, Liu P Q, Zheng S G, He S Y, Bao L P, Huang H Q. Crocetin improves endothelium-dependent relaxation of thoracic aorta in hypercholesterolemic rabbit by increasing eNOS activity.  Biochem Pharmacol. 2006;  72 558-565
  • 14 Kawashima S, Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis.  Arterioscler Thromb Vasc Biol. 2004;  24 998-1005
  • 15 Russo G, Leopold J A, Loscalzo J. Vasoactive substances: nitric oxide and endothelial dysfunction in atherosclerosis.  Vascul Pharmacol. 2002;  38 259-269
  • 16 Cook S. Coronary artery disease, nitric oxide and oxidative stress: the “Yin-Yang” effect – a Chinese concept for a worldwide pandemic.  Swiss Med Wkly. 2006;  136 103-113
  • 17 Hayashi T, Matsui-Hirai H, Fukatsu A, Sumi D, Kano-Hayashi H, Rani P JA, Iguchi A. Selective iNOS inhibitor, ONO1714 successfully retards the development of high-cholesterol diet induced atherosclerosis by novel mechanism.  Atherosclerosis. 2006;  187 316-324
  • 18 Behr-Roussel D, Rupin A, Simonet S, Bonhomme E, Coumailleau S, Cordi A, Sekiz B, Fabiani J N, Verbeuren T J. Effect of chronic treatment with the inducible nitric oxide synthase inhibitor N-iminoethyl-L-lysine or with L-arginine on progression of coronary and aortic atherosclerosis in hypercholesterolemic rabbits.  Circulation. 2000;  102 1033-1038
  • 19 Detmers P A, Hernandez M, Mudgett J, Hassing H, Burton C, Mundt S, Chun S, Fletcher D, Card D J, Lisnock J, Weikel R, Bergstrom J D, Shevell D E, Hermanowski-Vosatka A, Sparrow C P, Chao Y S, Rader D J, Wright S D, Pure E. Deficiency in inducible nitric oxide synthase results in reduced atherosclerosis in apolipoprotein E-deficient mice.  J Immunol. 2000;  165 3430-3435
  • 20 Gunnett C A, Lund D D, McDowell A K, Faraci F M, Heistad D D. Mechanisms of inducible nitric oxide synthase-mediated vascular dysfunction.  Arterioscler Thromb Vasc Biol. 2005;  25 1617-1622
  • 21 Gottlieb A I, Langille B L, Wong M K, Kim D W. Structure and function of the endothelial cytoskeleton.  Lab Invest. 1991;  65 123-137
  • 22 Rossi M A, Colombini-Netto M. Chronic inhibition of NO synthesis per se promotes structural intimal remodeling of the rat aorta.  J Hypertens. 2001;  19 1567-1579
  • 23 Nicholson S K, Tucker G A, Brameld J M. Effects of dietary polyphenols on gene expression in human vascular endothelial cells.  Pro Nutr Soc. 2008;  67 42-47
  • 24 Waffo Teguo P, Fauconneau B, Deffieux G, Huguet F, Vercauteren J, Merillon J M. Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from Vitis vinifera cell cultures.  J Nat Prod. 1998;  61 655-657
  • 25 Wang X, Zhao L, Han T, Chen S, Wang J. Protective effects of 2,3,5,4′-tetrahydroxystilbene 2-O-beta-D-glucoside, an active component of Polygonum multiflorum Thunb, on experimental colitis in mice.  Eur J Pharmacol. 2008;  578 339-348
  • 26 August M, Wingerter O, Oelze M, Wenzel P, Kleschyov A L, Daiber A, Mulsch A, Munzel T, Tsilimingas N. Mechanisms underlying dysfunction of carotid arteries in genetically hyperlipidemic rabbits.  Nitric Oxide. 2006;  15 241-251

Wei-Zhong Zhu

Department of Pharmacology
School of Medicine
Nantong University

19 Qi Xiu Road

Nantong 226001

People's Republic of China

Telefon: + 86 5 13 85 05 17 28

Fax: + 86 5 13 85 05 18 58

eMail: zhuwz@ntu.edu.cn