Subscribe to RSS
DOI: 10.1055/s-0029-1185774
© Georg Thieme Verlag KG Stuttgart · New York
Demethylbellidifolin Prevents Nitroglycerin Tolerance via Improved Aldehyde Dehydrogenase 2 Activity
Publication History
received Dec. 11, 2008
revised April 27, 2009
accepted April 29, 2009
Publication Date:
16 June 2009 (online)
Abstract
The aim of this study was to investigate the effect of demethylbellidifolin (DMB), a major xanthone compound of Swertia davidi Franch, on nitroglycerin (NTG) tolerance. In the in vivo portion of the study, pretreatment of Sprague-Dawley rats with NTG (10 mg/kg) for 8 days caused tolerance to the depressor effect of NTG. This was evident because the depressor effect of NTG (150 µg/kg, i. v.) was almost completely abolished in the tolerant rats. The tolerance could be diminished by treatment with DMB. In the in vitro study, the exposure of aortic rings of Sprague-Dawley rats to NTG (10 µM) for 30 min caused tolerance to the vasodilating effect of NTG. The tolerance is evident because of a substantial right shift of the NTG concentration-relaxation curves. This shift was reduced by pretreatment of the aortic rings with DMB. In cultured human umbilical vein endothelial cells (HUVECs), incubation of NTG for 16 h increased reactive oxygen species (ROS) production, attenuated cyclic guanosine monophosphate (cGMP) levels and decreased the activity of aldehyde dehydrogenase 2 (ALDH-2), the main enzyme responsible for NTG bioactivation. All the effects mentioned above were prevented by co-incubation with DMB. In conclusion, DMB prevents NTG tolerance via increasing ALDH-2 activity through decreasing ROS production.
Key words
demethylbellidifolin - nitroglycerin tolerance - reactive oxygen species - aldehyde dehydrogenase 2
References
- 1 Katsuki S, Arnold W P, Murad F. Effects of sodium nitroprusside, nitroglycerin, and sodium azide on levels of cyclic nucleotides and mechanical activity of various tissues. J Cyclic Nucleotide Res. 1977; 3 239-247
- 2 Munzel T, Sayegh H, Freeman B A, Tarpey M M, Harrison D G. Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J Clin Invest. 1995; 95 187-194
- 3 Dikalov S, Fink B, Skatchkov M, Sommer O, Bassenge E. Formation of reactive oxygen species in various vascular cells during glyceryltrinitrate metabolism. J Cardiovasc Pharmacol Ther. 1998; 3 51-62
- 4 Sage P R, de la Lande I S, Stafford I, Bennett C L, Phillipov G, Stubberfield J, Horowitz J D. Nitroglycerin tolerance in human vessels: evidence for impaired nitroglycerin bioconversion. Circulation. 2000; 102 2810-2815
- 5 Otto A, Fontaine D, Fontaine J, Berkenboom G. Rosuvastatin treatment protects against nitrate-induced oxidative stress. J Cardiovasc Pharmacol. 2005; 46 177-184
- 6 Fontaine D, Otto A, Fontaine J, Berkenboom G. Prevention of nitrate tolerance by long-term treatment with statins. Cardiovasc Drugs Ther. 2003; 17 123-128
- 7 Chen Z, Zhang J, Stamler J S. Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc Natl Acad Sci USA. 2002; 99 8306-8311
- 8 Sydow K, Daiber A, Oelze M, Chen Z, August M, Wendt M, Ullrich V, Mülsch A, Schulz E, Keaney Jr J F, Stamler J S, Münzel T. Central role of mitochondrial aldehyde dehydrogenase 2 and reactive oxygen species in nitroglycerin tolerance and cross-tolerance. J Clin Invest. 2004; 113 482-489
- 9 Mackenzie I S, Maki-Petaja K M, McEniery C M, Bao Y P, Wallace S M, Cheriyan J, Monteith S, Brown M J, Wilkinson I B. Aldehyde dehydrogenase 2 plays a role in the bioactivation of nitroglycerin in humans. Arterioscler Thromb Vasc Biol. 2005; 25 1891-1895
- 10 Esplugues J V, Rocha M, Nunez C, Bosca I, Ibiza S, Herance J R, Ortega A, Serrador J M, D'Ocn P, Victor V M. Complex I dysfunction and tolerance to nitroglycerin: an approach based on mitochondrial-targeted antioxidants. Circ Res. 2006; 99 1067-1075
- 11 Daiber A, Oelze M, Coldewey M, Bachschmid M, Wenzel P, Sydow K, Wendt M, Kleschyov A L, Stalleicken D, Ullrich V, Mulsh A, Munzel T. Oxidative stress and mitochondrial aldehyde dehydrogenase activity: a comparison of pentaerythritol tetranitrate with other organic nitrates. Mol Pharmacol. 2004; 66 1372-1382
- 12 Jiang D J, Dai Z, Li Y J. Pharmacological effects of xanthones as cardiovascular protective agents. Cardiovasc Drug Rev. 2004; 22 91-102
- 13 Jiang D J, Tan G S, Zhou Z H, Xu K P, Ye F, Li Y J. Protective effects of demethylbellidifolin on myocardial ischemia-reperfusion injury in rats. Planta Med. 2002; 68 710-713
- 14 Jiang D J, Jiang J L, Tan G S, Huang Z Z, Deng H W, Li Y J. Demethylbellidifolin inhibits adhesion of monocytes to endothelial cells via reduction of tumor necrosis factor alpha and endogenous nitric oxide synthase inhibitor level. Planta Med. 2003; 69 1150-1152
- 15 Jiang D J, Jiang J L, Zhu H Q, Tan G S, Liu S Q, Xu K P. Demethylbellidifolin preserves endothelial function by reduction of the endogenous nitric oxide synthase inhibitor level. J Ethnopharmacol. 2004; 93 295-306
- 16 Tan G S, Xu P S, Tian H Y, Xu K P, Dai Z Y. Studies on the chemical constituents of Swertia davidi. Chin Pharm J. 2000; 35 441-443
- 17 Chen Y R, Lie S D, Wang S, Jiang D J, Shi R Z, Zhou Z, Guo R, Zhang Z, Li Y G. Reduction of endogenous CGRP release in nitroglycerin tolerance: role of ALDH‐2. Eur J Pharmacol. 2007; 571 44-50
- 18 Zhou Z H, Deng H W, Li Y J. The depressor effect of nitroglycerin is mediated by calcitonin gene-related peptide. Life Sci. 2001; 69 1313-1320
- 19 Zhang G G, Shi R Z, Jiang D J, Chen Y R, Jia C, Tang Z Y, Bai Y P, Xiao H B, Li Y J. Involvement of the endothelial DDAH/ADMA pathway in nitroglycerin tolerance: the role of ALDH‐2. Life Sci. 2008; 82 699-707
- 20 Munzel T, Daiber A, Mulsch A. Explaining the phenomenon of nitrate tolerance. Circ Res. 2005; 30 618-628
- 21 Zhang J, Chen Z, Cobb F R, Stamler J S. Role of mitochondrial aldehyde dehydrogenase in nitroglycerin-induced vasodilation of coronary and systemic vessels: an intact canine model. Circulation. 2004; 110 750-755
- 22 Chen Z, Foster M W, Zhang J, Mao L, Rockman H A, Kawamoto T, Kitagaw K, Nakayama K I, Hess D T, Stamler J S. An essential role for mitochondrial aldehyde dehydrogenase in nitroglycerin bioactivation. Proc Natl Acad Sci USA. 2005; 102 12159-12164
- 23 Wenzel P, Hink U, Oelze M, Schuppan S, Schaeuble K, Schildknecht S, Ho K K, Weniner H, Bachschmid M, Munzel T, Daiber A. Role of reduced lipoic acid in the redox regulation of mitochondrial aldehyde dehydrogenase (ALDH‐2) activity. Implications for mitochondrial oxidative stress and nitrate tolerance. J Biol Chem. 2007; 282 792-799
- 24 Daiber A, Oelze M, Sulyok S, Coldewey M, Schulz E, Treiber N, Hink U, Mulsch A, Scharffetter-Kochanek K, Munzel T. Heterozygous deficiency of manganese superoxide dismutase in mice (Mn-SOD±): a novel approach to assess the role of oxidative stress for the development of nitrate tolerance. Mol Pharmacol. 2005; 68 579-588
- 25 Wenzel P, Oelze M, Coldewey M, Hortmann M, Seeling A, Hink U, Mollnau H, Stalleicken D, Weiner H, Lehmann J, Li H, Forstermann U, Munzel T, Daiber A. Heme oxygenase-1: a novel key player in the development of tolerance in response to organic nitrates. Arterioscler Thromb Vasc Biol. 2007; 27 1729-1735
Prof. Dr. Guo-Gang Zhang
Department of Cardiovascular Medicine
Xiangya Hospital
Central South University
Changsha
410008 Hunan
People's Republic of China
Phone: + 86 73 14 32 76 95
Fax: + 86 73 14 32 76 95
Email: Guo_gangzhang@yahoo.cn