Planta Med 2009; 75(13): 1371-1380
DOI: 10.1055/s-0029-1185979
Review
© Georg Thieme Verlag KG Stuttgart · New York

From Teratogens to Potential Therapeutics: Natural Inhibitors of the Hedgehog Signaling Network Come of Age

Amalya Hovhannisyan1 , Madlen Matz1 , Rolf Gebhardt1
  • 1Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
Further Information

Publication History

received March 19, 2009 revised June 14, 2009

accepted June 17, 2009

Publication Date:
28 July 2009 (online)

Abstract

Steroidal alkaloids from Veratrum californicum (Durand) are known to exert teratogenic effects (e.g., cyclopia, holoprosencephaly) by blocking the Hedgehog (Hh) signaling pathway, which plays a considerable role in embryonic development and organogenesis. Most surprisingly, recent studies demonstrate that this complex signaling network is active even in the healthy adult organism, where it seems to control important aspects of basic metabolism and interorgan homeostasis. Abnormal activation of Hh signaling, however, can lead to the development of different tumors, psoriasis, and other diseases. This review provides an overview of how the principle teratogenic and hazardous constituent of Veratrum californicum, cyclopamine, interferes with Hh signaling and can potentially serve as a beneficial therapeutic for different tumors and psoriasis.

References

  • 1 Binns W, James L F, Shupe J L, Everett G. A congenital cyclopean-type malformation in lambs induced by maternal ingestion of a range plant, Veratrum californicum.  Am J Vet Res. 1963;  24 1164-1175
  • 2 Keeler R F. Teratogenic compounds of Veratrum californicum (Durand) X. Cyclopia in rabbits produced by cyclopamine.  Teratology. 1970;  3 175-180
  • 3 Keeler R F. Teratogenic effects of cyclopamine and jervine in rats, mice and hamsters.  Proc Soc Exp Biol Med. 1975;  149 302-306
  • 4 Bryden M M, Perry C, Keeler R F. Effects of alkaloids of Veratrum californicum on chick embryos.  Teratology. 1973;  8 19-28
  • 5 Cohen Jr M M, Shiota K. Teratogenesis of holoprosencephaly.  Am J Med Genet. 2002;  109 1-15
  • 6 Siebert J R, Cohen Jr M M, Sulik K K, Shaw C-M, Lemire R J. Holoprosencephaly. An overview and atlas of cases. New York; Wiley-Liss 1990
  • 7 Keeler R F. Livestock models of human birth defects, reviewed in relation to poisonous plants.  J Animal Sci. 1988;  66 2414-2427
  • 8 Keeler R F, Binns W. Teratogenic compounds of Veratrum californicum (Durand). V. Comparison of cyclopean effects of steroidal alkaloids from the plant and structurally related compounds from other sources.  Teratology. 1968;  1 5-10
  • 9 Keeler R F. Cyclopamine and related steroidal alkaloid teratogens: their occurrence, structural relationship, and biological effects.  Lipids. 1978;  13 708-715
  • 10 Cong Y, Guo L, Yang J Y, Li L, Zhou Y B, Chen J, Wang J H. Steroidal alkaloids from Veratrum japonicum with genotoxicity on brain cell DNA of the cerebellum and cerebral cortex in mice.  Planta Med. 2007;  73 1588-1591
  • 11 Cong Y, Zhou Y B, Chen J, Zeng Y M, Wang J H. Alkaloid profiling of crude and processed Veratrum nigrum L. through simultaneous determination of ten steroidal alkaloids by HPLC-ELSD.  J Pharm Biomed Anal. 2008;  48 573-578
  • 12 Schep L J, Schmierer D M, Fountain J S. Veratrum poisoning.  Toxicol Rev. 2006;  25 73-78
  • 13 Ma R, Ritala A, Oksman-Caldentey K M, Rischer H. Development of in vitro techniques for the important medicinal plant Veratrum californicum.  Planta Med. 2006;  72 1142-1148
  • 14 Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer S W, Tsui L C, Muenke M. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly.  Nat Genet. 1996;  14 357-360
  • 15 Chiang C, Litingung Y, Lee E, Young K E, Corden J E, Westphal H, Beachy P A. Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function.  Nature. 1996;  383 407-413
  • 16 Cooper M K, Porter J A, Young K E, Beachy P A. Teratogen-mediated inhibition of target tissue response to Shh signalling.  Science. 1998;  280 1603-1607
  • 17 Bijlsma M F, Spek C A, Peppelenbosch M P. Hedgehog: an unusual signal transducer.  Bioessays. 2004;  26 387-394
  • 18 Hooper J F, Scott M P. Communicating with hedgehogs.  Nat Rev Mol Cell Biol. 2005;  6 306-317
  • 19 Ingham P W, Placzek M. Orchestrating ontogenesis: variations on a theme by sonic hedgehog.  Nat Rev Genet. 2006;  7 841-850
  • 20 Eaton S. Multiple roles for lipids in the Hedgehog signalling pathway.  Nat Rev Mol Cell Biol. 2008;  9 437-445
  • 21 Variosalo M, Taipale J. Hedgehog: functions and mechanisms.  Genes Dev. 2008;  22 2454-2472
  • 22 Mann R K, Beachy P A. Novel lipid modifications of secreted protein signals.  Ann Rev Biochem. 2004;  73 891-923
  • 23 Miura G I, Treisman J E. Lipid modification of secreted signaling proteins.  Cell Cycle. 2006;  5 1184-1188
  • 24 Torroja C, Gorfinkel N, Guerrero I. Mechanisms of hedgehog gradient formation and interpretation.  J Neurobiol. 2005;  64 334-356
  • 25 Dessaud E, Yang L L, Hill K, Cox B, Ulloa F, Ribeiro A, Mynett A, Novitch B G, Briscoe J. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism.  Nature. 2007;  450 717-721
  • 26 Panakova D, Sprong H, Marois E, Thiele C, Eaton S. Lipoprotein particles are required for Hedgehog and Wingless signaling.  Nature. 2005;  435 58-65
  • 27 Bijlsma M F, Spek C A, Zivkovic D, van de Water S, Rezaee F, Peppelenbosch M P. Repression of smoothened by patched-dependent (pro)vitamin D3 secretion.  PLoS Biol. 2006;  18 1397-1410
  • 28 Taipale J, Cooper M K, Maiti T, Beachy P A. Patched acts catalytically to suppress the activity of Smoothened.  Nature. 2002;  418 892-897
  • 29 Dennler S, André J, Alexaki I, Li A, Magnaldo T, ten Dijke P, Wang X J, Verrecchia F, Mauviel A. Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo.  Cancer Res. 2007;  67 6981-6986
  • 30 Pan Y, Wong B. A novel protein-processing domain in Gli2 and Gli3 differentially blocks complete protein degradation by the proteasome.  J Biol Chem. 2007;  282 10846-10852
  • 31 Fernández-Zapico M E. Primers on molecular pathways. Gli: more than just hedgehog?.  Pancreatology. 2008;  8 227-229
  • 32 Chen J K, Taipale J, Cooper M K, Beachy P A. Inhibition of hedgehog signaling by direct binding of cyclopamine to Smoothened.  Genes Dev. 2002;  16 2743-2748
  • 33 Mistretta C M, Liu H X, Gaffield W, MacCallum D K. Cyclopamine and jervine in embryonic rat tongue cultures demonstrate a role for Shh signaling in taste papilla development and patterning: fungiform papillae double in number and form innovel locations in dorsal lingual epithelium.  Dev Biol. 2003;  254 1-18
  • 34 Yoo Y A, Kang M H, Kim J S, Oh S C. Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-b-mediated activation of the ALK5–Smad 3 pathway.  Carcinogenesis. 2008;  29 480-490
  • 35 Taş S, Avcıb O. Rapid clearance of psoriatic skin lesions induced by topical cyclopamine.  Dermatology. 2004;  209 126-131
  • 36 Bar E E, Chaudry A, Lin A, Fan X, Schreck K, Matsui W, Piccirillo S, Vescovi A L, DiMeco F, Olivi A, Eberhart C G. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma.  Stem Cells. 2007;  25 2524-2533
  • 37 Liu S, Dontu G, Mantle I D, Patel S, Ahn N S, Jackson K W, Suri P, Wicha M S. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells.  Cancer Res. 2006;  66 6063-6071
  • 38 Kumar S K, Roy I, Anchoori R K, Fazli S, Maitra A, Beachy P A, Khan S R. Targeted inhibition of hedgehog signaling by cyclopamine prodrugs for advanced prostate cancer.  Bioorg Med Chem. 2008;  16 2764-2768
  • 39 Lees C, Howie S, Sartor B R, Satsangi J. The hedgehog signalling pathway in the gastrointestinal tract: implications for development, homeostasis, and disease.  Gastroenterology. 2005;  129 1696-1710
  • 40 Parga J A, Rodriguez-Pallares J, Blanco V, Guerra M J, Labandeira-Garcia J L. Different effects of anti-sonic hedgehog antibodies and the hedgehog pathway inhibitor cyclopamine on generation of dopaminergic neurons from neurospheres of mesencephalic precursors.  Dev Dyn. 2008;  237 909-917
  • 41 Hashimoto M, Ishii K, Nakamura Y, Watabe K, Kohsaka S, Akazawa C. Neuroprotective effect of sonic hedgehog up-regulated in Schwann cells following sciatic nerve injury.  J Neurochem. 2008;  107 918-927
  • 42 Charytoniuk D, Porcel B, Rodríguez Gomez J, Faure H, Ruat M, Traiffort E. Sonic Hh signalling in the developing and adult brain.  J Physiol Paris. 2002;  96 9-16
  • 43 Van den Brink G R, Bleuming S A, Hardwick J C H, Schepman B L, Offerhaus G J, Keller J J, Nielsen C, Gaffield W, van Deventer S J, Roberts D J, Peppelenbosch M P. Indian hedgehog is an antagonist of Wnt signalling in colonic epithelial cell differentiation.  Nature Genet. 2004;  36 277-282
  • 44 Omenetti A, Diehl A M. The adventures of sonic hedgehog in development and repair. II. Sonic hedgehog and liver development, inflammation, and cancer.  Am J Physiol Gastrointest Liver Physiol. 2008;  294 G595-598
  • 45 Szczepnya A, Hogartha C A, Younga J, Lovelanda K L. Identification of Hedgehog signalling outcomes in mouse testis development using a hanging-drop culture system.  Biol Reprod. 2009;  80 258-263
  • 46 Varas A, Carmen H L, Jaris V, Silvia M, Martínez V G, Hidalgo L, Gutiérrez-Frías C, Zapata A G, Sacedón R, Vicente A. Survival and function of human thymic dendritic cells are dependent on autocrine Hedgehog signaling.  J Leukoc Biol. 2008;  83 1476-1483
  • 47 Lavine K J, Kovacs A, Ornitz D M. Hedgehog signalling is critical for maintenance of the adult coronary vasculature in mice.  J Clin Invest. 2008;  7 2404-2414
  • 48 Bijlsma M F, Spek A C, Peppelenbosch M P. Hedgehog turns lipoproteins into janus-faced particles.  Cardiovasc Med. 2006;  16 217-220
  • 49 Bijlsma M F, Peppelenbosch M P, Spek A C. Hedgehog morphogen in cardiovascular disease.  Circulation. 2006;  114 1985-1991
  • 50 Bijlsma M F, Leenders P J, Janssen B J, Peppelenbosch M P, Ten Cate H, Spek C A. Endogenous hedgehog expression contributes to myocardial ischemia-reperfusion-induced injury.  Exp Biol Med (Maywood). 2008;  233 989-996
  • 51 Ohba S, Kawaguchi H, Kugimiya F, Ogasawara T, Kawamura N, Saito T, Ikeda T, Fujii K, Miyajima T, Kuramochi A, Miyashita T, Oda H, Nakamura K, Takato T, Chung U I. Patched1 haploinsufficiency increases adult bone mass and modulates Gli3 repressor activity.  Dev Cell. 2008;  14 689-699
  • 52 Gesta S, Tseng Y, Kahn C. Developmental origin of fat: tracking obesity to its source.  Cell. 2007;  135 366
  • 53 Cousin W, Fontaine C, Dani C, Peraldi P. Hedgehog and adipogenesis: Fat and fiction.  Biochimie. 2007;  89 1447-1453
  • 54 Suh J, Gao X, McKay J, McKay R, Salo Z, Graff J. Hedgehog signaling plays a conserved role in inhibiting fat formation.  Cell Metab. 2006;  3 25-34
  • 55 Fontaine C, Cousin W, Plaisant M, Dani C, Peraldi P. Hedgehog signaling alters adipocyte maturation of human mesenchymal stem cells.  Stem Cells. 2008;  26 1037-1046
  • 56 Cousin W, Dani C, Peraldi P. Inhibition of the anti-adipogenic hedgehog signaling pathway by cyclopamine does not trigger adipocyte differentiation.  Biochem Biophys Res Commun. 2006;  349 799-803
  • 57 Horst G, Sips H, Lowik C, Karperien M. Hedgehog stimulates only osteoplastic differentiation of undifferentiated Ks483 cells.  Bone. 2003;  33 899-910
  • 58 Martin P I, Lane J, Pouliot L, Gains M, Stejskal R, Smith Y, Galdes A, Green J. Increases in adipose and total body weight, but not in lean body mass, associated with subcutaneous administration of sonic hedgehog-Ig fusion protein to mice.  Drug DevRes. 2002;  57 107-114
  • 59 Goodrich L, Milenkovic M, Higgins K, Scott M. Altered neural cell fates and medulloblastoma in mouse patched mutants.  Science. 1997;  277 1109-1113
  • 60 Gorlin R. Nevoid basal cell cacrinoma syndrome.  Medicine (Baltimore). 1987;  66 98-113
  • 61 Buhman K, Wang L, Tang Y, Swietlicki E, Kennedy S, Xie Y, Liu Z, Burkly L, Levin M, Rubin D, Davidson N. Inhibition of Hedgehog signaling protects adult mice from diet-induces weight gain.  J Nutr. 2004;  134 2979-2984
  • 62 Wang L C, Nassir F, Liu Z Y, Ling L, Kuo F, Crowell T, Olson D, Davidson N O, Burkly L C. Disruption of hedgehog signalling reveals a novel role in intestinal morphogenesis and intestinal-specific lipid metabolism in mice.  Gastroenterology. 2002;  122 469-482
  • 63 Beckers L, Heeneman S, Wang L, Burkly L C, Rouch M M J, Davidson N O, Gijbels M J, de Winther M P, Daemen M J, Lutgens E. Disruption of hedgehog signalling in ApoE-/- mice reduces plasma lipid levels, but increases atherosclerosis due to enhanced lipid uptake by macrophages.  J Pathol. 2007;  212 420-428
  • 64 Li Z, Zhang H, Denhradt L, Liu L, Zhou H, Lan Z. Reduced white fat mass in adult mice bearing a truncated Patched 1.  Int J Biol Sci. 2008;  4 29-36
  • 65 Watkins D N, Peacock C D. Hedgehog signalling in foregut malignancy.  Biochem Pharmacol. 2004;  68 1055-1060
  • 66 Datta S, Datta M W. Sonic Hedgehog signaling in advanced prostate cancer.  Cell Mol Life Sci. 2006;  63 435-448
  • 67 Lauth M, Toftgård R. Non-canonical activation of GLI transcription factors.  Cell Cycle. 2007;  6 2458-2463
  • 68 Bailey J M, Singh P K, Hollingsworth M A. Cancer metastasis facilitated by developmental pathways: sonic hedgehog, notch, and bone morphogenic proteins.  J Cell Biochem. 2007;  102 829-839
  • 69 Tremblay M R, Nevalainen M, Nair S J, Porter J R, Castro A C, Behnke M L, Yu L C, Hagel M, White K, Faia K, Grenier L, Campbell M J, Cushing J, Woodward C N, Hoyt J, Foley M A, Read M A, Sydor J R, Tong J K, Palombella V J, McGovern K, Adams J. Semisynthetic cyclopamine analogues as potent and orally bioavailable hedgehog pathway antagonists.  J Med Chem. 2008;  51 6646-6649
  • 70 Yanai K, Nagai S, Wada J, Yamanaka N, Nakamura M, Torata N, Noshiro H, Tsuneyoshi M, Tanaka M, Katano M. Hedgehog signaling pathway is a possible therapeutic target for gastric cancer.  J Surg Oncol. 2007;  95 55-62
  • 71 Abe Y, Oda-Sato E, Tobiume K, Kawauchi K, Taya Y, Okamoto K, Oren M, Tanaka N. Hedgehog signaling overrides p 53-mediated tumor suppression by activating Mdm2.  Proc Natl Acad Sci USA. 2008;  105 4838-4843
  • 72 Peacock C D, Wang Q, Gesell G S, Corcoran-Schwartz I M, Jones E, Kim J, Devereux W L, Rhodes J T, Huff C A, Beachy P A, Watkins D N, Matsui W. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma.  Proc Natl Acad Sci USA. 2007;  104 4048-4053
  • 73 Geng L, Cuneo K C, Cooper M K, Wang H, Sekhar K, Fu A, Hallahan D E. Hedgehog signaling in the murine melanoma microenvironment.  Angiogenesis. 2007;  10 259-267
  • 74 James L F, Panter K E, Gaffield W, Molyneux R J. Biomedical applications of poisonous plant research.  J Agric Food Chem. 2004;  52 3211-3230
  • 75 He J, Sheng T, Stelter A A, Li C, Zhang X, Sinha M, Luxon B A, Xie J. Suppressing Wnt signaling by the Hedgehog pathway through sFRP-1.  J Biol Chem. 2006;  281 35598-35602
  • 76 Hatsell S, Frost A R. Hedgehog signaling in mammary gland development and breast cancer.  J Mammary Gland Biol Neoplasia. 2007;  12 163-173
  • 77 Tada M, Kanai F, Tanaka Y, Tateishi K, Ohta M, Asaoka Y, Seto M, Muroyama R, Fukai K, Imazeki F, Kawabe T, Yokosuka O, Omata M. Down-regulation of hedgehog-interacting protein through genetic and epigenetic alterations in human hepatocellular carcinoma.  Clin Cancer Res. 2008;  14 3768-3776
  • 78 Gudjonsson J E, Aphale A, Grachtchouk M, Ding J, Nair R P, Wang T, Voorhees J J, Dlugosz A A, Elder J T. Lack of evidence for activation of the hedgehog pathway in psoriasis.  J Invest Dermatol. 2009;  129 635-640
  • 79 Epstein E H. Basal cell carcinomas: attack of the hedgehog.  Nature Rev. 2008;  8 743-754
  • 80 Rubin L L, de Sauvage F J. Targeting the Hedgehog pathway in cancer.  Nature Rev. 2006;  5 1026-1033
  • 81 Lupi O. Correlations between the Sonic Hedgehog pathway and basal cell carcinoma.  Int J Dermatol. 2007;  46 1113-1117
  • 82 Stecca B, Mas C, Altaba A R. Interference with HH–GLI signaling inhibits prostate cancer.  Trends Mol Med. 2005;  11 199-203
  • 83 Clark P A, Treisman D M, Ebben J, Kuo J S. Developmental signaling pathways in brain tumor-derived stem-like cells.  Dev Dyn. 2007;  236 3297-3308
  • 84 Ehtesham M, Sarangi A, Valadez J G, Chanthaphaychith S, Becher M W, Abel T W, Thompson R C, Cooper M K. Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells.  Oncogene. 2007;  26 5752-5761
  • 85 Nishimaki H, Kasai K, Kozaki K, Takeo T, Ikeda H, Saga S, Nitta M, Itoh G. A role of activated Sonic hedgehog signaling for the cellular proliferation of oral squamous cell carcinoma cell line.  Biochem Biophys Res Commun. 2004;  314 313-320
  • 86 Katoh Y, Katoh M. Hedgehog signaling pathway and gastrointestinal stem cell signaling network.  Int J Mol Med. 2006;  18 1019-1023
  • 87 Yamazaki M, Nakamura K, Mizukami Y, Ii M, Sasajima J, Sugiyama Y, Nishikawa T, Nakano Y, Yanagawa N, Sato K, Maemoto A, Tanno S, Okumura T, Karasaki H, Kono T, Fujiya M, Ashida T, Chung D C, Kohgo Y. Sonic hedgehog derived from human pancreatic cancer cells augments angiogenic function of endothelial progenitor cells.  Cancer Sci. 2008;  99 1131-1138
  • 88 Lee C J, Dosch J, Simeone D M. Pancreatic cancer stem cells.  J Clin Oncol. 2008;  26 2806-2812
  • 89 Feldmann G, Habbe N, Dhara S, Bisht S, Alvarez H, Fendrich V, Beaty R, Mullendore M, Karikari C, Bardeesy N, Ouellette M M, Yu W, Maitra A. Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer.  Gut. 2008;  57 1420-1430
  • 90 Shafaee Z, Schmidt H, Du W, Posner M, Weichselbaum R. Cyclopamine increases the cytotoxic effects of paclitaxel and radiation but not cisplatin and gemcitabine in Hedgehog expressing pancreatic cancer cells.  Cancer Chemother Pharmacol. 2006;  58 765-770
  • 91 Jinawath A, Akiyama Y, Sripa B, Yuasa Y. Dual blockade of the Hedgehog and ERK1/2 pathways coordinately decreases proliferation and survival of cholangiocarcinoma cells.  J Cancer Res Clin Oncol. 2007;  133 271-278
  • 92 Watkins D N, Berman D M, Burkholder S G, Wang B. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer.  Nature. 2003;  422 313-317
  • 93 Shaw G, Prowse D M. Inhibition of androgen-independent prostate cancer cell growth is enhanced by combination therapy targeting Hedgehog and ErbB signaling.  Cancer Cell Int. 2008;  18 8-3
  • 94 Fendrich V, Waldmann J, Esni F, Ramaswamy A, Mullendore M, Buchholz M, Maitra A, Feldmann G. Snail and Sonic Hedgehog activation in neuroendocrine tumors of the ileum.  Endocr Relat Cancer. 2007;  14 865-874
  • 95 Iorio M V, Casalini P, Tagliabue E, Ménard S, Croce C M. MicroRNA profiling as a tool to understand prognosis, therapy response and resistance in breast cancer.  Eur J Cancer. 2008;  44 2753-2759
  • 96 Mehta R G, Naithani R, Huma L, Hawthorne M, Moriarty R M, McCormick D L, Steele V E, Kopelovich L. Efficacy of chemopreventive agents in mouse mammary gland organ culture (MMOC) model: a comprehensive review.  Curr Med Chem. 2008;  15 2785-2825
  • 97 Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M, Kuroki S, Katano M. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer.  Cancer Res. 2004;  64 6071-6074
  • 98 Zhang X, Harrington N, Moraes R C, Wu M F, Hilsenbeck S G, Lewis M T. Cyclopamine inhibition of human breast cancer cell growth independent of Smoothened (Smo).  Breast Cancer Res Treat. 2009;  115 505-521
  • 99 Kasper M, Jaks V, Fiaschi M, Toftgård R. Hedgehog signalling in breast cancer.  Carcinogenesis. 2009;  30 903-911
  • 100 Endo H, Momota Y, Oikawa A, Shinkai H. Psoriatic skin expresses the transcription factor Gli1: possible contribution of decreased neurofibromin expression.  Br J Dermatol. 2006;  154 619-623
  • 101 Kuenzli S, Sorg O, Saurat J H. Cyclopamine, Hedgehog and psoriasis.  Dermatology. 2004;  209 81-83
  • 102 McFerren M A. Useful plants of dermatology. VIII. The false hellebore (Veratrum californicum).  J Am Acad Dermatol. 2006;  54 718-720
  • 103 Xie J. Implications of hedgehog signaling antagonists for cancer therapy.  Acta Biochim Biophys Sin (Shanghai). 2008;  40 670-680
  • 104 Zhang J, Garrossian M, Gardner D, Garrossian A, Chang Y T, Kim Y K, Chang C W. Synthesis and anticancer activity studies of cyclopamine derivatives.  Bioorg Med Chem Lett. 2008;  18 1359-1363

Prof. Dr. Rolf Gebhardt

Institut für Biochemie
University of Leipzig

Johannesallee 30

04103 Leipzig

Germany

Phone: + 49 34 19 72 21 00

Fax: + 49 34 19 72 21 09

Email: rgebhardt@medizin.uni-leipzig.de