Planta Med 2010; 76(3): 258-264
DOI: 10.1055/s-0029-1186083
Pharmacology
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Sesquiterpene Lactone Parthenolide Markedly Enhances Sensitivity of Human A549 Cells to Low-Dose Oxaliplatin via Inhibition of NF-κB Activation and Induction of Apoptosis

Liang-Jie Fang1 [*] , Xue-Ting Shao2 [*] , Shuo Wang1 , Guo-Hua Lu1 , Tao Xu1 , Jian-Ying Zhou1
  • 1Department of Respiratory Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
  • 2Department of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
Further Information

Publication History

received March 20, 2009 revised August 2, 2009

accepted August 3, 2009

Publication Date:
11 September 2009 (online)

Abstract

Aberrant activation of NF-κB has been proposed as the major cause of chemoresistance in lung cancer. Low-dose chemotherapeutic agents with limited toxicity and achieving profoundly enhanced efficacy by blocking NF-κB activation may be a useful strategy in cancer therapy. Thus, this study was performed to explore the effect of parthenolide, a natural NF-κB inhibitor, on human lung cancer A549 cells treated with low-dose oxaliplatin, as well as to determine the potential mechanisms involved. We incubated A549 cells with different concentrations of parthenolide in the absence or presence of a low-dose of oxaliplatin for 48 h. Then, cell proliferation was determined by MTT assay, and flow cytometry was used to study apoptosis. PGE2 production in culture supernatants was detected by competitive ELISA, while expression of NF-κB/p65, COX-2, caspase-3 and caspase-9 proteins were analyzed by Western blot. Finally, compared to parthenolide or oxaliplatin alone, significant improvements in cell apoptosis and growth inhibition indexes were observed in the combined treatment. NF-κB/p65, COX-2, and PGE2 expression were suppressed by the co-application; meanwhile, caspase-3 and caspase-9 proteins were obviously activated. These findings indicate that parthenolide could markedly enhance sensitivity of A549 cells to low-dose oxaliplatin by inhibiting NF-κB activation and inducing apoptosis. Parthenolide in combination with a low dose of oxaliplatin may be a beneficial chemotherapeutic strategy for patients who cannot tolerate the severe side effects of the drug at therapeutic concentrations.

References

  • 1 Molina J R, Yang P, Cassivi S D, Schild S E, Adjei A A. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship.  Mayo Clin Proc. 2008;  83 584-594
  • 2 d'Amato T A, Landreneau R J, McKenna R J, Santos R S, Parker R J. Prevalence of in vitro extreme chemotherapy resistance in resected non-small cell lung cancer.  Ann Thorac Surg. 2006;  81 440-447
  • 3 Wang G, Reed E, Li Q Q. Molecular basis of cellular response to cisplatin chemotherapy in non-small cell lung cancer.  Oncol Rep. 2004;  12 955-965
  • 4 Chen L F, Greene W C. Shaping the nuclear action of NF-κB.  Nat Rev Mol Cell Biol. 2004;  5 392-401
  • 5 Shishodia S, Aggarwal B B. Nuclear factor-kappaB activation mediates cellular transformation, proliferation, invasion angiogenesis and metastasis of cancer.  Cancer Treat Res. 2004;  119 139-173
  • 6 Chen F, Castranova V. Nuclear factor-kappaB, an unappreciated tumor suppressor.  Cancer Res. 2007;  67 11093-11098
  • 7 Zhang J, Xu Y J, Zhang Z X, Du C L, Qiao L F, Ni W, Chen S X. Nuclear factor-kappaB activity and its correlation with cell proliferation in non-small cell lung cancer tissues.  Zhonghua Jie He He Hu Xi Za Zhi. 2007;  30 771-775
  • 8 Denlinger C E, Rundall B K, Jones D R. Modulation of antiapoptotic cell signaling pathways in non-small cell lung cancer: the role of NF-kappaB.  Semin Thorac Cardiovasc Surg. 2004;  16 28-39
  • 9 Cheng Q, Lee H H, Li Y. Upregulation of Bcl-x and Bfl-1 as a potential mechanism of chemoresistance, which can be overcome by NF-kappaB inhibition.  Oncogene. 2000;  19 4936-4940
  • 10 Hosomi Y, Yokose T, Hirose Y, Nakajima R, Nagai K, Nishiwaki Y, Ochiai A. Increased cyclooxygenase 2 (COX-2) expression occurs frequently in precursor lesions of human adenocarcinoma of the lung.  Lung Cancer. 2000;  30 73-81
  • 11 McLemore T L, Hubbard W C, Litterst C L, Liu M C, Miller S, McMahon N A, Eggleston J C, Boyd M R. Profiles of prostaglandin biosynthesis in normal lung and tumor tissue from lung cancer patients.  Cancer Res. 1988;  48 140-147
  • 12 Sharma S, Huang M, Dohadwala M, Pold M, Batra R K, Dubinett S M. Cyclooxygenase 2-dependent regulation of antitumor immunity in lung cancer.  Methods Mol Med. 2003;  75 723-736
  • 13 Dohadwala M, Batra R K, Luo J, Lin Y, Krysan K, Pold M, Sharma S, Dubinett S M. Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion.  J Biol Chem. 2002;  277 50828-50833
  • 14 Schinella G R, Giner R M, Recio M C, Mordujovich de Buschiazzo P, Ríos J L, Máñez S. Anti-inflammatory effects of South American Tanacetum vulgare.  J Pharm Pharmacol. 1998;  50 1069-1074
  • 15 Wu C, Chen F, Rushing J W, Wang X, Kim H J, Huang G, Haley-Zitlin V, He G. Antiproliferative activities of parthenolide and golden feverfew extract against three human cancer cell lines.  J Med Food. 2006;  9 55-61
  • 16 Wen J, You K R, Lee S Y, Song C H, Kim D G. Oxidative stress-mediated apoptosis. The anticancer effect of the sesquiterpene lactone parthenolide.  J Biol Chem. 2002;  277 38954-38964
  • 17 Nakshatri H, Rice S E, Bhat-Nakshatri P. Antitumor agent parthenolide reverses resistance of breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through sustained activation of c-Jun N-terminal kinase.  Oncogene. 2004;  23 7330-7344
  • 18 Miglietta A, Bozzo F, Gabriel L, Bocca C. Microtubule-interfering activity of parthenolide.  Chem Biol Interact. 2004;  149 165-173
  • 19 Jin X, Lin Q, Zhang D, Zhang M, Wang Z, Guo Z, Peng M, Deng C, Guo C. Chemosensitization in non-small cell lung cancer cells by IKK inhibitor occurs via NF-kappaB and mitochondrial cytochrome c cascade.  J Cell Mol Med. 2008;  DOI: 10.1111/j.1582-4934.2008.00601.x
  • 20 Stordal B, Pavlakis N, Davey R. Oxaliplatin for the treatment of cisplatin-resistant cancer: a systematic review.  Cancer Treat Rev. 2007;  33 347-357
  • 21 Stordal B K, Davey M W, Davey R A. Oxaliplatin induces drug resistance more rapidly than cisplatin in H69 small cell lung cancer cells.  Cancer Chemother Pharmacol. 2006;  58 256-265
  • 22 Parada-Turska J, Paduch R, Majdan M, Kandefer-Szerszeń M, Rzeski W. Antiproliferative activity of parthenolide against three human cancer cell lines and human umbilical vein endothelial cells.  Pharmacol Rep. 2007;  59 233-237
  • 23 Baldwin A S. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB.  J Clin Invest. 2001;  107 241-246
  • 24 Denlinger C E, Rundall B K, Keller M D, Jones D R. Proteasome inhibition sensitizes non-small-cell lung cancer to gemcitabine-induced apoptosis.  Ann Thorac Surg. 2004;  78 1207-1214
  • 25 Jones D R, Broad R M, Madrid L V, Baldwin Jr A S, Mayo M W. Inhibition of NF-kappaB sensitizes non-small cell lung cancer cells to chemotherapy-induced apoptosis.  Ann Thorac Surg. 2000;  70 930-936
  • 26 Das K C, White C W. Activation of NF-κB by antineoplastic agents: role of protein kinase C.  J Biol Chem. 1997;  272 14914-14920
  • 27 deGraffenried L A, Chandrasekar B, Friedrichs W E, Donzis E, Silva J, Hidalgo M, Freeman J W, Weiss G R. NF-kappa B inhibition markedly enhances sensitivity of resistant breast cancer tumor cells to tamoxifen.  Ann Oncol. 2004;  15 885-890
  • 28 Riggins R B, Zwart A, Nehra R, Clarke R. The nuclear factor kappa B inhibitor parthenolide restores ICI 182, 780 (Faslodex; fulvestrant)-induced apoptosis in antiestrogen-resistant breast cancer cells.  Mol Cancer Ther. 2005;  4 33-41
  • 29 Schön M, Wienrich B G, Kneitz S. KINK-1, a novel small-molecule inhibitor of IKKbeta, and the susceptibility of melanoma cells to antitumoral treatment.  J Natl Cancer Inst. 2008;  100 862-875
  • 30 Katano K, Kondo A, Safaei R, Holzer A, Samimi G, Mishima M, Kuo Y M, Rochdi M, Howell S B. Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper.  Cancer Res. 2002;  62 6559-6565
  • 31 Krysan K, Reckamp K L, Dalwadi H, Sharma S, Rozengurt E, Dohadwala M, Dubinett S M. Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner.  Cancer Res. 2005;  65 6275-6281
  • 32 Kim J H, Liu L, Lee S O, Kim Y T, Kim Y T, You K R, Kim D G. Susceptibility of cholangiocarcinoma cells to parthenolide-induced apoptosis.  Cancer Res. 2005;  65 6312-6320
  • 33 Anderson K N, Bejcek B E. Parthenolide induces apoptosis in glioblastomas without affecting NF-κB.  J Pharmacol Sci. 2008;  2 318-320
  • 34 Gopal Y N, Arora T S, Van Dyke M W. Parthenolide specifically depletes histone deacetylase 1 protein and induces cell death through ataxia telangiectasia mutated.  Chem Biol. 2007;  14 813-823

1 These authors contributed to this work equally.

Prof. Jian-Ying Zhou

Department of Respiratory Medicine
First Affiliated Hospital
School of Medicine
Zhejiang University

79 Qingchun Road

310009 Hangzhou

P. R. China

Phone: + 86 5 71 87 23 68 76

Fax: + 86 5 71 87 23 68 76

Email: Drzjy@163.com