Planta Med 2010; 76(5): 458-460
DOI: 10.1055/s-0029-1186226
Natural Product Chemistry
Letters
© Georg Thieme Verlag KG Stuttgart · New York

Two New Peltogynoids from Acacia nilotica Delile with Kinase Inhibitory Activity

Augustine Ahmadu1 , 2 , Agunu Abdulkarim3 , Raphaël Grougnet1 , 4 , Vassilios Myrianthopoulos1 , François Tillequin4 , Prokopios Magiatis1 , Alexios-Leandros Skaltsounis1
  • 1Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis-Zografou, Athens, Greece
  • 2Department of Pharmaceutical Chemistry, Niger-Delta University, Wilberforce Island, Yeanagoa, Nigeria
  • 3Department of Pharmacognosy and Drug development, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria
  • 4Laboratoire de Pharmacognosie de l'Université René Descartes, UMR/CNRS 8638, Faculté de Pharmacie, Paris, France
Weitere Informationen

Publikationsverlauf

received July 9, 2009 revised September 13, 2009

accepted September 22, 2009

Publikationsdatum:
20. Oktober 2009 (online)

Abstract

Two new peltogynoids, acanilol A (1) and acanilol B (2), were isolated from the stem bark of Acacia nilotica (L.) Delile, together with the known triterpene lupenone. The structures of the new compounds were established on the basis of their spectral data, mainly UV, NMR, and mass spectrometry. The new compounds were tested as kinase inhibitors against CDK1, GSK3, CK1, and DYRK1A, and acanilol B was identified as a DYRK1A inhibitor, with an IC50 of 19 µM.

References

  • 1 Pedley L. Derivation and dispersal of Acacia (Leguminosae), with particular reference to Australia, and the recognition of Senegalia and Racosperma.  Bot J Linn Soc. 1986;  92 219-254
  • 2 Seigler D S. Phytochemistry of Acaciasensu lato.  Biochem Syst Ecol. 2003;  31 845-873
  • 3 Abd El Nabi O M, Reisinger E C, Reinthaler F F, Still F, Eibel U, Krejs G J. Antimicrobial activity of Acacia nilotica (L.) Willd. Ex Del. Var nilotica (Mimosaceae).  J Ethnopharmacol. 1992;  37 77-79
  • 4 Elizabeth K M, Sireesha D, Rao K N, Rao M V B. Antimicrobial activity of Acacia nilotica.  Asian J Chem. 2005;  18 191-195
  • 5 Mustafa N K, Tanira M O M, Dar F K, Nsanze H. Antimicrobial activity of Acacia nilotica subsp. nilotica fruit extracts.  Pharm Pharmacol Commun. 1999;  5 583-586
  • 6 Bhargava A, Srivastava A, Kumbhare V. Antifungal activity of polyphenolic complex of Acacia nilotica bark.  Indian Forester. 1998;  124 292-298
  • 7 Chaubal R, Mujumdar A M, Misar A, Deshpande N R. Isolation of phenolic compounds from Acacia nilotica with topical antiinflammatory activity.  Asian J Chem. 2005;  17 1595-1599
  • 8 Chaubal R, Mujumdar A M, Puranik V G, Deshpande V H, Deshpande N R. Isolation and X-ray study of an anti-inflammatory active androstene steroid from Acacia nilotica.  Planta Med. 2003;  69 287-288
  • 9 Khalid S A, Yagi S M, Khritova P, Duddeck H. (+)-Catechin-5-galloyl ester as a novel natural polyphenol from the bark of Acacia nilotica of Sudanese origin.  Planta Med. 1989;  55 556-558
  • 10 Malan E. Derivatives of (+)-catechin-5-gallate from the bark of Acacia nilotica.  Phytochemistry. 1991;  30 2737-2739
  • 11 Chauhan D, Singh J, Siddiqui I R. Isolation of two flavonol glycosides from the seeds of Acacia nilotica.  Indian J Chem. 2000;  39 , [B]: 719–722
  • 12 Prakash L, Garg G. Chemical constituents of the roots of Millingtonia hortensis L. and Acacia nilotica (L.) Del.  J Indian Chem Soc. 1981;  58 96-97
  • 13 Chalk R C, Stoddart J F, Szarek W A, Jones J K N. Isolation of two arabinobioses from Acacia nilotica gum.  Can J Chem. 1968;  46 2311-2313
  • 14 Waiss Jr A C, Lundin R E, Lee A, Corse J. Photochemistry of quercetin pentamethyl ether.  J Am Chem Soc. 1967;  89 6213-6218
  • 15 Drewes S E, Roux D G. Isolation of mopanin from Colophospermum mopane and interrelation of flavonoid components of Peltogyne spp.  J Chem Soc C. 1967;  1407-1410
  • 16 Brandt E V, Ferreira D, Roux D G. Metabolites from the purple heartwood of Mimosoideae. Part 2. Acacia carnei maiden: isolation, synthesis, and reactions of crombeone.  J Chem Soc [Perkin I]. 1981;  514-521
  • 17 McPherson D D, Cordell G A, Soejarto D D, Pezzuto J M, Fong H H S. Peltogynoids and homoisoflavonoids from Caesalpinia pulcherrima.  Phytochemistry. 1983;  22 2835-2838
  • 18 Choudhary M I, Nur-e-Alam M, Akhtar F, Ahmad S, Baig I, Öndögnii P, Gombosurengyin P, Atta-ur-Rhaman. Five new peltogynoids from underground parts of Iris bungei: a Mongolian medicinal plant.  Chem Pharm Bull. 2001;  49 1295-1298
  • 19 Lu H, Chang D J, Baratte B, Meijer L, Schulze-Gahmen U. Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin.  J Med Chem. 2005;  48 737-743
  • 20 Holder S, Zemskova M, Zhang C, Tabrizizad M, Bremer R, Neidigh J W, Lilly M B. Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase.  Mol Cancer Ther. 2007;  6 163-172
  • 21 Puapairoj P, Naengchomnong W, Kijjoa A, Pinto M M, Pedro M, Nascimento M S J, Silva A M S, Herz W. Cytotoxic activity of lupane-type triterpenes from Glochidion sphaerogynum and Glochidion eriocarpum two of which induce apoptosis.  Planta Med. 2005;  71 208-213
  • 22 Glide, version 3.4. New York; Schrödinger, LLC 2004
  • 23 Echalier A, Bettayeb K, Ferandin Y, Lozach O, Clement M, Valette A, Liger F, Marquet B, Morris J C, Endicott J A, Joseph B, Meijer L. Meriolins [3-(Pyrimidin-4-yl)-7-azaindoles]: synthesis, kinase inhibitory activity, cellular effects, and structure of a CDK2/cyclin A/meriolin complex.  J Med Chem. 2008;  51 737-751

Prof. Dr. Prokopios Magiatis

Department of Pharmacognosy and Natural Products Chemistry
Faculty of Pharmacy
University of Athens

Panepistimiopolis-Zografou

15771 Athens

Greece

Telefon: + 30 21 07 27 40 52

Fax: + 30 21 07 27 45 94

eMail: magiatis@pharm.uoa.gr