Int J Sports Med 2009; 30(7): 489-495
DOI: 10.1055/s-0029-1202340
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Endurance Training of Moderate Intensity Increases Testosterone Concentration in Young, Healthy Men

M. Grandys 1 , J. Majerczak 1 , K. Duda 1 , 2 , J. Zapart-Bukowska 1 , J. Kulpa 3 , J. A. Zoladz 1
  • 1Department of Physiology and Biochemistry, University School of Physical Education, Krakow, Poland
  • 2Department of Surgical Oncology, Cancer Institute, Krakow, Poland
  • 3Department of Clinical Biochemistry, Cancer Institute, Krakow, Poland
Further Information

Publication History

accepted after revision December 23, 2008

Publication Date:
19 March 2009 (online)

Abstract

The aim of this study was to investigate the effect of short-term, moderate intensity and low volume endurance training on gonadal hormone profile in untrained men. Fifteen young, healthy men performed an endurance training of 5-week duration on a cycle ergometer. Before and after the exercise program all participants completed a maximal incremental test. Concentration of testosterone (T), sex hormone-binding globulin (SHBG) and cortisol (C) as well as blood morphology were determined in venous blood samples at rest both before and after the training. The training program resulted in 3.7% improvement of maximal oxygen uptake (V˙O2max) and 8.2% improvement of power output reached at V˙O2max (POmax). This was accompanied by significant increase in T (from 18.84±5.73 nmol·l−1 to 22.03±6.61 nmol·l−1, p = 0.0004) and calculated fT concentration (from 374±116 pmol·l−1 to 470±153 pmol·l−1, p = 0.00005). Moreover, the training caused a significant decrease in SHBG concentration (from 34.45±11.26 nmol·l−1 to 31.95±10.40 nmol·l−1, p = 0.01), whereas no significant changes were found in the cortisol concentration (334±138 nmol·l−1 vs. 367±135 nmol·l−1 for pre- and post-training measures, respectively, p = 0.50) and T/C and fT/C ratios. We have concluded that short-term, moderate intensity and low volume endurance training can significantly increase testosterone concentration in previously untrained men.

References

  • 1 Adlercreutz H, Harkonen M, Kuoppasalmi K, Naveri H, Huhtaniemi I, Tikkanen H, Remes K, Dessypris A, Karvonen J. Effect of training on plasma anabolic and catabolic steroid hormones and their response during physical exercise.  Int J Sports Med. 1986;  7 ((Suppl 1)) 27-28
  • 2 Anderson DC. Sex-hormone-binding globulin.  Clin Endocrinol. 1974;  3 69-96
  • 3 Arce JC, De Souza MJ, Pescatello LS, Luciano AA. Subclinical alterations in hormone and semen profile in athletes.  Fertil Steril. 1993;  59 398-404
  • 4 Banfi G, Marinelli M, Roi GS, Agape V. Usefulness of free testosterone/cortisol ratio during a season of elite speed skating athletes.  Int J Sports Med. 1993;  14 373-379
  • 5 Barstow TJ, Jones AM, Nguyen PH, Casaburi R. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise.  J Appl Physiol. 1996;  81 1642-1650
  • 6 Bhasin S, Woodhouse L, Storer TW. Proof of the effect of testosterone on skeletal muscle.  J Endocrinol. 2001;  170 27-38
  • 7 De Souza MJ, Arce JC, Pescatello LS, Scherzer HS, Luciano AA. Gonadal hormones and semen quality in male runners. A volume threshold effect of endurance training.  Int J Sports Med. 1994;  15 383-391
  • 8 De Souza MJ, Miller BE. The effect of endurance training on reproductive function in male runners. A ‘volume threshold’ hypothesis.  Sports Med. 1997;  23 357-374
  • 9 Enoki T, Yoshida Y, Lally J, Hatta H, Bonen A. Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1 and MCT4 in rat skeletal muscle.  J Physiol. 2006;  577 433-443
  • 10 Esteve-Lanao J, Foster C, Seiler S, Lucia A. Impact of training intensity distribution on performance in endurance athletes.  J Strength Cond Res. 2007;  21 943-949
  • 11 Fahrner CL, Hackney AC. Effects of endurance exercise on free testosterone concentration and the binding affinity of sex hormone binding globulin (SHBG).  Int J Sports Med. 1998;  19 12-15
  • 12 Friedl KE. Effects of testosterone and related androgens on athletic performance in man. In: Kraemer WJ, Rogol AD, eds. The Encyclopaedia of Sports Medicine: The Endocrine System in Sports and Exercise. Oxford: Blackwell Publishing 2005: 525-543
  • 13 Friedl KE, Moore RJ, Hoyt RW, Marchitelli LJ, Martinez-Lopez LE, Askew EW. Endocrine markers of semistarvation in healthy lean men in a multistressor environment.  J Appl Physiol. 2000;  88 1820-1830
  • 14 Hackney AC, Fahrner CL, Gulledge TP. Basal reproductive hormonal profiles are altered in endurance trained men.  J Sports Med Phys Fitness. 1998;  38 138-141
  • 15 Hackney AC, Szczepanowska E, Viru AM. Basal testicular testosterone production in endurance-trained men is suppressed.  Eur J Appl Physiol. 2003;  89 198-201
  • 16 Harridge SD. Plasticity of human skeletal muscle: gene expression to in vivo function.  Exp Physiol. 2007;  92 783-797
  • 17 Hoogeveen AR, Zonderland ML. Relationships between testosterone, cortisol and performance in professional cyclists.  Int J Sports Med. 1996;  17 423-428
  • 18 Hug M, Mullis PE, Vogt M, Ventura N, Hoppeler H. Training modalities: over-reaching and over-training in athletes, including a study of the role of hormones.  Best Pract Res Clin Endocrinol Metab. 2003;  17 191-209
  • 19 Izquierdo M, Ibanez J, Gonzalez-Badillo JJ, Hakkinen K, Ratamess NA, Kraemer WJ, French DN, Eslava J, Altadill A, Asiain X, Gorostiaga EM. Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains.  J Appl Physiol. 2006;  100 1647-1656
  • 20 Keizer H, Janssen GM, Menheere P, Kranenburg G. Changes in basal plasma testosterone, cortisol, and dehydroepiandrosterone sulfate in previously untrained males and females preparing for a marathon.  Int J Sports Med. 1989;  10 ((Suppl 3)) S139-S145
  • 21 Kraemer WJ, French DN, Paxton NJ, Hakkinen K, Volek JS, Sebastianelli WJ, Putukian M, Newton RU, Rubin MR, Gomez AL, Vescovi JD, Ratamess NA, Fleck SJ, Lynch JM, Knuttgen HG. Changes in exercise performance and hormonal concentrations over a big ten soccer season in starters and nonstarters.  J Strength Cond Res. 2004;  18 121-128
  • 22 Kraemer WJ, Hakkinen K, Newton RU, Nindl BC, Volek JS, McCormick M, Gotshalk LA, Gordon SE, Fleck SJ, Campbell WW, Putukian M, Evans WJ. Effects of heavy-resistance training on hormonal response patterns in younger vs. older men.  J Appl Physiol. 1999;  87 982-992
  • 23 Lucia A, Chicharro JL, Perez M, Serratosa L, Bandres F, Legido JC. Reproductive function in male endurance athletes: sperm analysis and hormonal profile.  J Appl Physiol. 1996;  81 2627-2636
  • 24 Maimoun L, Lumbroso S, Manetta J, Paris F, Leroux JL, Sultan C. Testosterone is significantly reduced in endurance athletes without impact on bone mineral density.  Horm Res. 2003;  59 285-292
  • 25 Mäestu J, Jürimäe J, Jürimäe T. Hormonal response to maximal rowing before and after heavy increase in training volume in highly trained male rowers.  J Sports Med Phys Fitness. 2005;  45 121-126
  • 26 Opstad PK. Androgenic hormones during prolonged physical stress, sleep, and energy deficiency.  J Clin Endocrinol Metab. 1992;  74 1176-1183
  • 27 Pugeat M, Crave JC, Tourniaire J, Forest MG. Clinical utility of sex hormone-binding globulin measurement.  Horm Res. 1996;  45 148-155
  • 28 Purge P, Jürimäe J, Jürimäe T. Hormonal and psychological adaptation in elite male rowers during prolonged training.  J Sports Sci. 2006;  24 1075-1082
  • 29 Remes K, Kuoppasalmi K, Adlercreutz H. Effect of long-term physical training on plasma testosterone, androstenedione, luteinizing hormone and sex-hormone-binding globulin capacity.  Scand J Clin Lab Invest. 1979;  39 743-749
  • 30 Roberts AC, MacClure RD, Weiner RI, Brooks GA. Overtraining affects male reproductive status.  Fertil Steril. 1993;  60 686-692
  • 31 Shahidi NT. A review of the chemistry, biological action, and clinical applications of anabolic-androgenic steroids.  Clin Ther. 2001;  23 1355-1390
  • 32 Shono N, Urata H, Saltin B, Mizuno M, Harada T, Shinto M, Tanaka H. Effects of low intensity aerobic training on skeletal muscle capillary and blood lipoprotein profiles.  J Atheroscler Thromb. 2002;  9 78-85
  • 33 Staron RS, Karapondo DL, Kraemer WJ, Fry AC, Gordon SE, Falkel JE, Hagerman FC, Hikida RS. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women.  J Appl Physiol. 1994;  76 1247-1255
  • 34 Strauss RH, Lanese RR, Malarkey WB. Weight loss in amateur wrestlers and its effect on serum testosterone levels.  JAMA. 1985;  254 3337-3338
  • 35 Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum.  J Clin Endocrinol Metab. 1999;  84 3666-3672
  • 36 Viru A. Plasma hormones and physical exercise.  Int J Sports Med. 1992;  13 201-209
  • 37 Wade GN, Jones JE. Neuroendocrinology of nutritional infertility.  Am J Physiol Regul Integr Comp Physiol. 2004;  287 R1277-R1296
  • 38 Wheeler GD, Singh M, Pierce WD, Epling WF, Cumming DC. Endurance training decreases serum testosterone levels in men without change in luteinizing hormone pulsatile release.  J Clin Endocrinol Metab. 1991;  72 422-425
  • 39 White LJ, Dressendorfer RH, Ferguson MA, Wade CE. Maintenance of testosterone status in fitness joggers after increased training mileage.  Eur J Appl Physiol. 2002;  86 498-502
  • 40 Zoladz JA, Korzeniewski B, Grassi B. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.  J Physiol Pharmacol. 2006;  57 ((Suppl 10)) 67-84
  • 41 Zoladz JA, Rademaker AC, Sargeant AJ. Non-linear relationship between O2 uptake and power output at high intensities of exercise in humans.  J Physiol. 1995;  488 211-217

Correspondence

Prof. Dr. J. A. Zoladz

Department of Physiology and Biochemistry

Faculty of Rehabilitation University School of Physical Education

Al. Jana Pawla II 78

31-571 Krakow

Poland

Phone: 48/12/683 13 16

Fax: 48/12/683 13 16

Email: wfzoladz@cyf-kr.edu.pl