Subscribe to RSS
DOI: 10.1055/s-0029-1202813
© Georg Thieme Verlag KG Stuttgart · New York
Cinnamon Extract Attenuates TNF-α-induced Intestinal Lipoprotein ApoB48 Overproduction by Regulating Inflammatory, Insulin, and Lipoprotein Pathways in Enterocytes
Publication History
received 08.12.2008
accepted 27.01.2009
Publication Date:
06 April 2009 (online)
Abstract
We have previously reported that the obesity-associated proinflammatory cytokine, TNF-α, stimulates the overproduction of intestinal apolipoprotein (apo) B48 containing lipoproteins. In the current study, we have evaluated whether a water-soluble cinnamon extract [CE (Cinnulin PF®)] attenuates the dyslipidemia induced by TNF-α in Triton WR-1339 treated hamsters, and whether CE inhibits the oversecrection of apoB48-induced by TNF-α in enterocytes in a 35S labeling study. In vivo, oral treatment of Cinnulin PF® (50 mg per kg BW), inhibited the postprandial overproduction of apoB48-containing lipoproteins and serum triglyceride levels. In ex vivo 35S labeling studies, CE (10 and 20 μg/ml) inhibited the oversecretion of apoB48 induced by TNF-α treated enterocytes into the media. To determine the molecular mechanisms, TNF-α treated primary enterocytes isolated from chow-fed hamsters, were incubated with CE (10 μg/ml), and the expression of the inflammatory factor genes, IL1-β, IL-6, and TNF-α, insulin signaling pathway genes, insulin receptor (IR), IRS1, IRS2, phosphatidylinositol 3-kinase (PI3-K), Akt1 and phosphatase and tensin homology (PTEN), as well as the key regulators of lipid metabolism, cluster of differentiation (CD)36, microsomal triglyceride transfer protein (MTTP), and sterol regulatory element binding protein (SREBP)-1c were evaluated. Quantitative real-time PCR assays showed that CE treatment decreased the mRNA expression of IL-1β, IL-6 and TNF-α, improved the mRNA expression of IR, IRS1, IRS2, PI3K and Akt1, inhibited CD36, MTTP, and PTEN, and enhanced the impaired SREBP-1c expression in TNF-α treated enterocytes. These data suggest that a water extract of cinnamon reverses TNF-α-induced overproduction of intestinal apoB48 by regulating gene expression involving inflammatory, insulin, and lipoprotein signaling pathways. In conclusion, Cinulin PF® improves inflammation related intestinal dyslipidemia.
Key words
cinnamon extract - TNF-α - chylomicrons - intestinal gene expression
References
- 1 Ohmura E, Hosaka D, Yazawa M, Tsuchida A, Tokunaga M, Ishida H, Minagawa S, Matsuda A, Imai Y, Kawazu S, Sato T. Association of free fatty acids (FFA) and tumor necrosis factor-alpha (TNF-alpha) and insulin-resistant metabolic disorder. Horm Metab Res. 2007; 39 212-217
- 2 Yudkin JS. Inflammation, obesity, and the metabolic syndrome. Horm Metab Res. 2007; 39 707-709
- 3 Popa C, Netea MG, van Riel PL, van der Meer JW, Stalenhoef AF. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res. 2007; 48 751-762
- 4 Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005; 111 1448-1454
- 5 Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995; 95 2409-2415
- 6 Galisteo M, Sanchez M, Vera R, Gonzalez M, Anguera A, Duarte J, Zarzuelo A. A diet supplemented with husks of Plantago ovata reduces the development of endothelial dysfunction, hypertension, and obesity by affecting adiponectin and TNF-alpha in obese Zucker rats. J Nutr. 2005; 135 2399-2404
- 7 Zhang L, Wheatley CM, Richards SM, Barrett EJ, Clark MG, Rattigan S. TNF-alpha acutely inhibits vascular effects of physiological but not high insulin or contraction. Am J Physiol Endocrinol Metab. 2003; 285 E654-E660
- 8 Feingold KR, Soued M, Adi S, Staprans I, Shigenaga J, Doerrler W, Moser A, Grunfeld C. Tumor necrosis factor-increased hepatic very-low-density lipoprotein production and increased serum triglyceride levels in diabetic rats. Diabetes. 1990; 39 1569-1574
- 9 Qin B, Qiu W, Avramoglu RK, Adeli K. Tumor necrosis factor-alpha induces intestinal insulin resistance and stimulates the overproduction of intestinal apolipoprotein B48-containing lipoproteins. Diabetes. 2007; 56 450-461
- 10 Haidari M, Leung N, Mahbub F, Uffelman KD, Kohen-Avramoglu R, Lewis GF, Adeli K. Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction. J Biol Chem. 2002; 277 31646-31655
- 11 Zoltowska M, Ziv E, Delvin E, Sinnett D, Kalman R, Garofalo C, Seidman E, Levy E. Cellular aspects of intestinal lipoprotein assembly in Psammomys obesus: a model of insulin resistance and type 2 diabetes. Diabetes. 2003; 52 2539-2545
- 12 Mero N, Malmstrom R, Steiner G, Taskinen MR, Syvanne M. Postprandial metabolism of apolipoprotein B-48- and B-100-containing particles in type 2 diabetes mellitus: relations to angiographically verified severity of coronary artery disease. Atherosclerosis. 2000; 150 167-177
- 13 Sirtori CR, Galli C, Anderson JW, Arnoldi A. Nutritional and nutraceutical approaches to dyslipidemia and atherosclerosis prevention: Focus on dietary proteins. Atherosclerosis. 2009; 203 ((1)) 8-17
- 14 Anderson RA, Broadhurst CL, Polansky MM, Schmidt WF, Khan A, Flanagan VP, Schoene NW, Graves DJ. Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. J Agric Food Chem. 2004; 52 65-70
- 15 Broadhurst CL, Polansky MM, Anderson RA. Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. J Agric Food Chem. 2000; 48 849-852
- 16 Jarvill-Taylor KJ, Anderson RA, Graves DJ. Regulation of PTP-1 and insulin receptor kinase by fractions from cinnamon: implications for cinnamon regulation of insulin signalling. Horm Res. 1998; 50 177-182
- 17 Jarvill-Taylor KJ, Anderson RA, Graves DJ. A hydroxychalcone derived from cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes. J Am Coll Nutr. 2001; 20 327-336
- 18 Qin B, Nagasaki M, Ren M, Bajotto G, Oshida Y, Sato Y. Cinnamon extract prevents the insulin resistance induced by a high-fructose diet. Horm Metab Res. 2004; 36 119-125
- 19 Ziegenfuss TN, Hofheins JE, Mendel RW, Landis J, Anderson RA. Effects of a water-soluble cinnamon extract on body composition and features of the metabolic syndrome in pre-diabetic men and women. J Int Soc Sports Nutr. 2006; 3 45-53
- 20 Roussel AM, Hininger I, Benaraba R, Tim N, Anderson RA. Antioxidant effects of a cinnamon extract in people with impaired fasting glucose that are overweight or obese. J American College Nutr. 2009; , [In Press]
- 21 Wang JG, Anderson RA, Graham III GM, Chu MC, Sauer MV, Guarnaccia MM, Lobo RA. The effect of cinnamon extract on insulin resistance parameters in polycystic ovary syndrome: a pilot study. Fertil Steril. 2007; 88 240-243
- 22 Qin B, Polansky MM, Sato Y, Adeli K, Anderson RA. Cinnamon extract inhibits the postprandial overproduction of apolipoprotein B48-containing lipoproteins in fructose-fed animals. J Nutr Biochem. 2009; , [In Press]
- 23 Mang B, Wolters M, Schmitt B, Kelb K, Lichtinghagen R, Stichtenoth DO, Hahn A. Effects of a cinnamon extract on plasma glucose, HbA, and serum lipids in diabetes mellitus type 2. Eur J Clin Invest. 2006; 36 340-344
- 24 Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care. 2003; 26 3215-3218
- 25 Baker WL, Gutierrez-Williams G, White CM, Kluger J, Coleman CI. Effect of cinnamon on glucose control and lipid parameters. Diabetes Care. 2008; 31 41-43
- 26 Vanschoonbeek K, Thomassen BJ, Senden JM, Wodzig WK, van Loon LJ. Cinnamon supplementation does not improve glycemic control in postmenopausal type 2 diabetes patients. J Nutr. 2006; 136 977-980
- 27 Qin B, Anderson RA, Adeli K. Tumor necrosis factor-alpha directly stimulates the overproduction of hepatic apolipoprotein B100-containing VLDL via impairment of hepatic insulin signaling. Am J Physiol Gastrointest Liver Physiol. 2008; 294 G1120-G1129
- 28 Chirieac DV, Chirieac LR, Corsetti JP, Cianci J, Sparks CE, Sparks JD. Glucose-stimulated insulin secretion suppresses hepatic triglyceride-rich lipoprotein and apoB production. Am J Physiol Endocrinol Metab. 2000; 279 E1003-E1011
- 29 Federico LM, Naples M, Taylor D, Adeli K. Intestinal insulin resistance and aberrant production of apolipoprotein B48 lipoproteins in an animal model of insulin resistance and metabolic dyslipidemia: evidence for activation of protein tyrosine phosphatase-1B, extracellular signal-related kinase, and sterol regulatory element-binding protein-1c in the fructose-fed hamster intestine. Diabetes. 2006; 55 1316-1326
- 30 Taghibiglou C, Rashid-Kolvear F, Van Iderstine SC, Le Tien H, Fantus IG, Lewis GF, Adeli K. Hepatic very low density lipoprotein-ApoB overproduction is associated with attenuated hepatic insulin signaling and overexpression of protein-tyrosine phosphatase 1B in a fructose-fed hamster model of insulin resistance. J Biol Chem. 2002; 277 793-803
- 31 Zheng C, Ikewaki K, Walsh BW, Sacks FM. Metabolism of apoB lipoproteins of intestinal and hepatic origin during constant feeding of small amounts of fat. J Lipid Res. 2006; 47 1771-1779
- 32 Welty FK, Lichtenstein AH, Barrett PH, Dolnikowski GG, Schaefer EJ. Human apolipoprotein (Apo) B-48 and ApoB-100 kinetics with stable isotopes. Arterioscler Thromb Vasc Biol. 1999; 19 2966-2974
- 33 Fernandez-Real JM, Molina A, Broch M, Ricart W, Gutierrez C, Casamitjana R, Vendrell J, Soler J, Gomez-Saez JM. Tumor necrosis factor system activity is associated with insulin resistance and dyslipidemia in myotonic dystrophy. Diabetes. 1999; 48 1108-1112
- 34 Dandona P, Aljada A, Mohanty P. The anti-inflammatory and potential anti-atherogenic effect of insulin: a new paradigm. Diabetologia. 2002; 45 924-930
- 35 Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005; 115 1111-1119
- 36 Lewis GF, Uffelman K, Naples M, Szeto L, Haidari M, Adeli K. Intestinal lipoprotein overproduction, a newly recognized component of insulin resistance, is ameliorated by the insulin sensitizer rosiglitazone: studies in the fructose-fed Syrian golden hamster. Endocrinology. 2005; 146 247-255
- 37 Leslie NR, Downes CP. PTEN: The down side of PI 3-kinase signalling. Cell Signal. 2002; 14 285-295
- 38 Lo YT, Tsao CJ, Liu IM, Liou SS, Cheng JT. Increase of PTEN gene expression in insulin resistance. Horm Metab Res. 2004; 36 662-666
- 39 Lo YT, Tzeng TF, Liu IM. Role of tumor suppressor PTEN in tumor necrosis factor alpha-induced inhibition of insulin signaling in murine skeletal muscle C2C12 cells. Horm. Metab Res. 2007; 39 173-178
- 40 Qiu W, Federico L, Naples M, Avramoglu RK, Meshkani R, Zhang J, Tsai J, Hussain M, Dai K, Iqbal J, Kontos CD, Horie Y, Suzuki A, Adeli K. Phosphatase and tensin homolog (PTEN) regulates hepatic lipogenesis, microsomal triglyceride transfer protein, and the secretion of apolipoprotein B-containing lipoproteins. Hepatology. 2008; 48 1799-1809
- 41 Nauli AM, Nassir F, Zheng S, Yang Q, Lo CM, Vonlehmden SB, Lee D, Jandacek RJ, Abumrad NA, Tso P. CD36 is important for chylomicron formation and secretion and may mediate cholesterol uptake in the proximal intestine. Gastroenterology. 2006; 131 1197-1207
- 42 Chen M, Yang YK, Loux TJ, Georgeson KE, Harmon CM. The role of hyperglycemia in FAT/CD36 expression and function. Pediatr Surg Int. 2006; 22 647-654
- 43 Poirier H, Degrace P, Niot I, Bernard A, Besnard P. Localization and regulation of the putative membrane fatty-acid transporter (FAT) in the small intestine. Comparison with fatty acid-binding proteins (FABP). Eur J Biochem. 1996; 238 368-373
- 44 Hussain MM. A proposed model for the assembly of chylomicrons. Atherosclerosis. 2000; 148 1-15
- 45 Gleeson A, Anderton K, Owens D, Bennett A, Collins P, Johnson A, White D, Tomkin GH. The role of microsomal triglyceride transfer protein and dietary cholesterol in chylomicron production in diabetes. Diabetologia. 1999; 42 944-948
- 46 Phillips C, Bennett A, Anderton K, Owens D, Collins P, White D, Tomkin GH. Intestinal rather than hepatic microsomal triglyceride transfer protein as a cause of postprandial dyslipidemia in diabetes. Metabolism. 2002; 51 847-852
- 47 Sewter C, Berger D, Considine RV, Medina G, Rochford J, Ciaraldi T, Henry R, Dohm L, Flier JS, O’Rahilly S, Vidal-Puig AJ. Human obesity and type 2 diabetes are associated with alterations in SREBP1 isoform expression that are reproduced ex vivo by tumor necrosis factor-alpha. Diabetes. 2002; 51 1035-1041
Correspondence
B. QinMD, PhD
USDA-ARS-BHNRC-DGIL
Building 307C, Rm 215
10300 Baltimore Ave
Beltsville
20705 MD
USA
Phone: +1/301/504 52 53 (ext. 272)
Fax: +1/301/504 90 62
Email: Bolin.Qin@ars.usda.gov
Email: bolin@integritynut.com
R. A. AndersonPh.D.
USDA-ARS-BHNRC-DGIL
Building 307C, Rm 222
10300 Baltimore Ave
Beltsville
20705 MD
USA
Phone: +1/301/504 80 91
Fax: +1/301/504 90 62
Email: Richard.Anderson@ars.usda.gov