Semin Thromb Hemost 2009; 35(1): 081-092
DOI: 10.1055/s-0029-1214151
© Thieme Medical Publishers

Gene Therapy for Hemophilia: Clinical Trials and Technical Tribulations

Nicholas O. Viiala1 , 2 , Stephen R. Larsen1 , 2 , 3 , John E.J Rasko1 , 2 , 3
  • 1Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, NSW, Australia
  • 2Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
  • 3Cell & Molecular Therapies, Sydney Cancer Centre, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
Further Information

Publication History

Publication Date:
23 March 2009 (online)

ABSTRACT

As monogenic disorders, hemophilia A and B are compelling candidates for treatment with gene therapy. In hemophilia, a therapeutic benefit achieved by gene therapy should only require a modest increase in the endogenous factor level; response to treatment can be monitored easily; and there are relevant small and large animal models. The two main approaches aiming to restore factor VIII or factor IX production are based on genetically modified cells or direct in vivo gene delivery using viral or plasmid vectors. The progress toward gene therapy for hemophilia A and B in both preclinical and clinical models will be evaluated in this review. Various viral and nonviral vectors are discussed in the context of current hurdles arising from preclinical and clinical trials. Despite disappointing clinical results to date, there are favorable indications that the near future should deliver on the long-sought promise of a cure for hemophilia.

REFERENCES

  • 1 Tuddenham E, Cooper D. The molecular genetics of haemostasis and its inherited disorders. In: Tuddenham E, Cooper D Oxford Monographs in Medical Genetics. New York, NY; Oxford University Press 1994: 23
  • 2 Crary S E, Buchanan G R, Journeycake J M. Fatal central venous catheter-related infection in haemophilia.  Haemophilia. 2006;  12 183-186
  • 3 Hacker M R, Page J H, Shapiro A D, Rich-Edwards J W, Manco-Johnson M J. Central venous access device infections in children with hemophilia: a comparison of prophylaxis and episodic therapy.  J Pediatr Hematol Oncol. 2007;  29 458-464
  • 4 Hothi D K, Kelsall W, Baglin T, Williams D M. Bacterial endocarditis in a child with haemophilia B: risks of central venous catheters.  Haemophilia. 2001;  7 507-510
  • 5 Lin Y, Chang L, Solovey A et al.. Use of blood outgrowth endothelial cells for gene therapy for hemophilia A.  Blood. 2002;  99 457-462
  • 6 Hollestelle M J, Thinnes T, Crain K et al.. Tissue distribution of factor VIII gene expression in vivo—a closer look.  Thromb Haemost. 2001;  86 855-861
  • 7 Ogata K, Mimuro J, Kikuchi J et al.. Expression of human coagulation factor VIII in adipocytes transduced with the simian immunodeficiency virus agmTYO1-based vector for hemophilia A gene therapy.  Gene Ther. 2004;  11 253-259
  • 8 Lofqvist T, Nilsson I M, Berntorp E, Pettersson H. Haemophilia prophylaxis in young patients—a long-term follow-up.  J Intern Med. 1997;  241 395-400
  • 9 Bi L, Lawler A M, Antonarakis S E et al.. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A.  Nat Genet. 1995;  10 119-121
  • 10 Jin D Y, Zhang T P, Gui T, Stafford D W, Monahan P E. Creation of a mouse expressing defective human factor IX.  Blood. 2004;  104 1733-1739
  • 11 Lin H F, Maeda N, Smithies O, Straight D L, Stafford D W. A coagulation factor IX-deficient mouse model for human hemophilia B.  Blood. 1997;  90 3962-3966
  • 12 Wang L, Zoppe M, Hackeng T M et al.. A factor IX-deficient mouse model for hemophilia B gene therapy.  Proc Natl Acad Sci U S A. 1997;  94 11563-11566
  • 13 Sabatino D E, Armstrong E, Edmonson S et al.. Novel hemophilia B mouse models exhibiting a range of mutations in the factor IX gene.  Blood. 2004;  104 2767-2774
  • 14 Evans J P, Brinkhous K M, Brayer G D, Reisner H M, High K A. Canine hemophilia B resulting from a point mutation with unusual consequences.  Proc Natl Acad Sci U S A. 1989;  86 10095-10099
  • 15 Hough C, Kamisue S, Cameron C et al.. Aberrant splicing and premature termination of transcription of the FVIII gene as a cause of severe canine hemophilia A: similarities with the intron 22 inversion mutation in human hemophilia.  Thromb Haemost. 2002;  87 659-665
  • 16 Lozier J N, Dutra A, Pak E et al.. The Chapel Hill hemophilia A dog colony exhibits a factor VIII gene inversion.  Proc Natl Acad Sci U S A. 2002;  99 12991-12996
  • 17 Lozier J N, Metzger M E, Donahue R E, Morgan R A. The rhesus macaque as an animal model for hemophilia B gene therapy.  Blood. 1999;  93 1875-1881
  • 18 Palmer T D, Thompson A R, Miller A D. Production of human factor IX in animals by genetically modified skin fibroblasts: potential therapy for hemophilia B.  Blood. 1989;  73 438-445
  • 19 Qiu X, Lu D, Zhou J et al.. Implantation of autologous skin fibroblast genetically modified to secrete clotting factor IX partially corrects the hemorrhagic tendencies in two hemophilia B patients.  Chin Med J (Engl). 1996;  109 832-839
  • 20 Roth D A, Tawa Jr N E, O'Brien J M, Treco D A, Selden R F. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A.  N Engl J Med. 2001;  344 1735-1742
  • 21 Lu D R, Zhou J M, Zheng B et al.. Stage I clinical trial of gene therapy for hemophilia B.  Sci China B. 1993;  36 1342-1351
  • 22 Bontempo F A, Lewis J H, Gorenc T J et al.. Liver transplantation in hemophilia A.  Blood. 1987;  69 1721-1724
  • 23 Gordon F H, Mistry P K, Sabin C A, Lee C A. Outcome of orthotopic liver transplantation in patients with haemophilia.  Gut. 1998;  42 744-749
  • 24 Kumaran V, Benten D, Follenzi A et al.. Transplantation of endothelial cells corrects the phenotype in hemophilia A mice.  J Thromb Haemost. 2005;  3 2022-2031
  • 25 Follenzi A, Benten D, Novikoff P et al.. Transplanted endothelial cells repopulate the liver endothelium and correct the phenotype of hemophilia A mice.  J Clin Invest. 2008;  118 935-945
  • 26 Ohashi K, Waugh J M, Dake M D et al.. Liver tissue engineering at extrahepatic sites in mice as a potential new therapy for genetic liver diseases. Hepatology .  2005;  41 132-140
  • 27 Moayeri M, Ramezani A, Morgan R A, Hawley T S, Hawley R G. Sustained phenotypic correction of hemophilia A mice following oncoretroviral-mediated expression of a bioengineered human factor VIII gene in long-term hematopoietic repopulating cells.  Mol Ther. 2004;  10 892-902
  • 28 Ide L M, Gangadharan B, Chiang K Y, Doering C B, Spencer H T. Hematopoietic stem-cell gene therapy of hemophilia A incorporating a porcine factor VIII transgene and nonmyeloablative conditioning regimens.  Blood. 2007;  110 2855-2863
  • 29 Moayeri M, Hawley T S, Hawley R G. Correction of murine hemophilia A by hematopoietic stem cell gene therapy.  Mol Ther. 2005;  12 1034-1042
  • 30 Kasuda S, Kubo A, Sakurai Y et al.. Establishment of embryonic stem cells secreting human factor VIII for cell-based treatment of hemophilia A.  J Thromb Haemost. 2008;  6 1352-1359
  • 31 Fujikawa T, Oh S H, Pi L et al.. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells.  Am J Pathol. 2005;  166 1781-1791
  • 32 Van Damme A, Chuah M K, Dell'accio F et al.. Bone marrow mesenchymal cells for haemophilia A gene therapy using retroviral vectors with modified long-terminal repeats.  Haemophilia. 2003;  9 94-103
  • 33 Chuah M K, Van Damme A, Zwinnen H et al.. Long-term persistence of human bone marrow stromal cells transduced with factor VIII-retroviral vectors and transient production of therapeutic levels of human factor VIII in nonmyeloablated immunodeficient mice.  Hum Gene Ther. 2000;  11 729-738
  • 34 Matsui H, Shibata M, Brown B et al.. Ex vivo gene therapy for hemophilia A that enhances safe delivery and sustained in vivo factor VIII expression from lentivirally engineered endothelial progenitors.  Stem Cells. 2007;  25 2660-2669
  • 35 Yarovoi H V, Kufrin D, Eslin D E et al.. Factor VIII ectopically expressed in platelets: efficacy in hemophilia A treatment.  Blood. 2003;  102 4006-4013
  • 36 Shi Q, Wilcox D A, Fahs S A et al.. Factor VIII ectopically targeted to platelets is therapeutic in hemophilia A with high-titer inhibitory antibodies.  J Clin Invest. 2006;  116 1974-1982
  • 37 Powell J S, Ragni M V, White II G C et al.. Phase 1 trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion.  Blood. 2003;  102 2038-2045
  • 38 Lothrop C, Niemeyer G, Dufresne M et al.. Treatment of canine hemophilia A by direct infusion of retroviral vector expressing the human FVIII cDNA.  Mol Ther. 2000;  5 S289
  • 39 Wu X, Li Y, Crise B, Burgess S M. Transcription start regions in the human genome are favored targets for MLV integration.  Science. 2003;  300 1749-1751
  • 40 Gaspar H B, Parsley K L, Howe S et al.. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector.  Lancet. 2004;  364 2181-2187
  • 41 Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G et al.. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease.  Science. 2000;  288 669-672
  • 42 Hacein-Bey-Abina S, Le Deist F, Carlier F et al.. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy.  N Engl J Med. 2002;  346 1185-1193
  • 43 Check E. Gene therapy put on hold as third child develops cancer.  Nature. 2005;  433 561
  • 44 Hacein-Bey-Abina S, von Kalle C, Schmidt M et al.. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency.  N Engl J Med. 2003;  348 255-256
  • 45 Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al.. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1.  Science. 2003;  302 415-419
  • 46 Hacein-Bey-Abina S, Garrigue A, Wang G P et al.. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1.  J Clin Invest. 2008;  118 3132-3142
  • 47 Williams D A. An international conversation on Stem Cell Gene Therapy. 4th Stem Cell Conference on Stem Cell Gene Therapy, Thessaloniki, Greece, 13–17 September 2007.  Mol Ther. 2007;  15 2058-2059
  • 48 Kootstra N A, Matsumura R, Verma I M. Efficient production of human FVIII in hemophilic mice using lentiviral vectors.  Mol Ther. 2003;  7(5 Pt 1) 623-631
  • 49 Park F, Ohashi K, Kay M A. Therapeutic levels of human factor VIII and IX using HIV-1-based lentiviral vectors in mouse liver.  Blood. 2000;  96 1173-1176
  • 50 Tsui L V, Kelly M, Zayek N et al.. Production of human clotting factor IX without toxicity in mice after vascular delivery of a lentiviral vector.  Nat Biotechnol. 2002;  20 53-57
  • 51 Follenzi A, Battaglia M, Lombardo A et al.. Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice.  Blood. 2004;  103 3700-3709
  • 52 Brown B D, Venneri M A, Zingale A, Sergi Sergi L, Naldini L. Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer.  Nat Med. 2006;  12 585-591
  • 53 Ye P, Thompson A R, Sarkar R et al.. Naked DNA transfer of factor VIII induced transgene-specific, species-independent immune response in hemophilia A mice.  Mol Ther. 2004;  10 117-126
  • 54 Olivares E C, Hollis R P, Chalberg T W et al.. Site-specific genomic integration produces therapeutic factor IX levels in mice.  Nat Biotechnol. 2002;  20 1124-1128
  • 55 Lozier J N, Metzger M E, Donahue R E, Morgan R A. Adenovirus-mediated expression of human coagulation factor IX in the rhesus macaque is associated with dose-limiting toxicity.  Blood. 1999;  94 3968-3975
  • 56 Gallo-Penn A M, Shirley P S, Andrews J L et al.. Systemic delivery of an adenoviral vector encoding canine factor VIII results in short-term phenotypic correction, inhibitor development, and biphasic liver toxicity in hemophilia A dogs.  Blood. 2001;  97 107-113
  • 57 McCormack Jr W M, Seiler M P, Bertin T K et al.. Helper-dependent adenoviral gene therapy mediates long-term correction of the clotting defect in the canine hemophilia A model.  J Thromb Haemost. 2006;  4 1218-1225
  • 58 Chuah M K, Schiedner G, Thorrez L et al.. Therapeutic factor VIII levels and negligible toxicity in mouse and dog models of hemophilia A following gene therapy with high-capacity adenoviral vectors.  Blood. 2003;  101 1734-1743
  • 59 Brown B D, Shi C X, Powell S et al.. Helper-dependent adenoviral vectors mediate therapeutic factor VIII expression for several months with minimal accompanying toxicity in a canine model of severe hemophilia A.  Blood. 2004;  103 804-810
  • 60 Arruda V R. Toward gene therapy for hemophilia A with novel adenoviral vectors: successes and limitations in canine models.  J Thromb Haemost. 2006;  4 1215-1217
  • 61 Balague C, Zhou J, Dai Y et al.. Sustained high-level expression of full-length human factor VIII and restoration of clotting activity in hemophilic mice using a minimal adenovirus vector.  Blood. 2000;  95 820-828
  • 62 Raper S E, Chirmule N, Lee F S et al.. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer.  Mol Genet Metab. 2003;  80 148-158
  • 63 Bartlett J S, Wilcher R, Samulski R J. Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors.  J Virol. 2000;  74 2777-2785
  • 64 Miao C H, Nakai H, Thompson A R et al.. Nonrandom transduction of recombinant adeno-associated virus vectors in mouse hepatocytes in vivo: cell cycling does not influence hepatocyte transduction.  J Virol. 2000;  74 3793-3803
  • 65 Scallan C D, Liu T, Parker A E et al.. Phenotypic correction of a mouse model of hemophilia A using AAV2 vectors encoding the heavy and light chains of FVIII.  Blood. 2003;  102 3919-3926
  • 66 Chao H, Monahan P E, Liu Y, Samulski R J, Walsh C E. Sustained and complete phenotype correction of hemophilia B mice following intramuscular injection of AAV1 serotype vectors.  Mol Ther. 2001;  4 217-222
  • 67 Monahan P E, Samulski R J, Tazelaar J et al.. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia.  Gene Ther. 1998;  5 40-49
  • 68 Herzog R W, Yang E Y, Couto L B et al.. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector.  Nat Med. 1999;  5 56-63
  • 69 Arruda V R, Stedman H H, Nichols T C et al.. Regional intravascular delivery of AAV-2-F.IX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model.  Blood. 2005;  105 3458-3464
  • 70 Arruda V, Stedman H, Jian H et al.. 603. Correction of hemophilia B phenotype by novel method of regional intravenous delivery of AAV vector to skeletal muscle of hemophilia B dogs.  Mol Ther. 2005;  11 S233
  • 71 Snyder R O, Miao C, Meuse L et al.. Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors.  Nat Med. 1999;  5 64-70
  • 72 Scallan C D, Lillicrap D, Jiang H et al.. Sustained phenotypic correction of canine hemophilia A using an adeno-associated viral vector.  Blood. 2003;  102 2031-2037
  • 73 Mount J D, Herzog R W, Tillson D M et al.. Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy.  Blood. 2002;  99 2670-2676
  • 74 Nathwani A C, Gray J T, Ng C Y et al.. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver.  Blood. 2006;  107 2653-2661
  • 75 Vandendriessche T, Thorrez L, Acosta-Sanchez A et al.. Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 vs. lentiviral vectors for hemophilia B gene therapy.  J Thromb Haemost. 2007;  5 16-24
  • 76 Jiang H, Lillicrap D, Patarroyo-White S et al.. Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering factor VIII to hemophilia A mice and dogs.  Blood. 2006;  108 107-115
  • 77 Davidoff A M, Gray J T, Ng C Y et al.. Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models.  Mol Ther. 2005;  11 875-888
  • 78 Gao G, Lu Y, Calcedo R et al.. Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates.  Mol Ther. 2006;  13 77-87
  • 79 Manno C S, Chew A J, Hutchison S et al.. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B.  Blood. 2003;  101 2963-2972
  • 80 Manno C S, Pierce G F, Arruda V R et al.. Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response.  Nat Med. 2006;  12 342-347
  • 81 Jiang H, Pierce G F, Ozelo M C et al.. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B.  Mol Ther. 2006;  14 452-455
  • 82 Mingozzi F, Maus M V, Hui D J et al.. CD8(+) T-cell responses to adeno-associated virus capsid in humans.  Nat Med. 2007;  13 419-422
  • 83 Vandenberghe L H, Wang L, Somanathan S et al.. Heparin binding directs activation of T cells against adeno-associated virus serotype 2 capsid.  Nat Med. 2006;  12 967-971
  • 84 Thomas C E, Storm T A, Huang Z, Kay M A. Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors.  J Virol. 2004;  78 3110-3122
  • 85 Schuettrumpf J, Liu J H, Couto L B et al.. Inadvertent germline transmission of AAV2 vector: findings in a rabbit model correlate with those in a human clinical trial.  Mol Ther. 2006;  13 1064-1073
  • 86 Donsante A, Vogler C, Muzyczka N et al.. Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors.  Gene Ther. 2001;  8 1343-1346
  • 87 Donsante A, Miller D G, Li Y et al.. AAV vector integration sites in mouse hepatocellular carcinoma.  Science. 2007;  317 477
  • 88 Bell P, Moscioni A D, McCarter R J et al.. Analysis of tumors arising in male B6C3F1 mice with and without AAV vector delivery to liver.  Mol Ther. 2006;  14 34-44
  • 89 Margaritis P, Arruda V R, Aljamali M et al.. Novel therapeutic approach for hemophilia using gene delivery of an engineered secreted activated factor VII.  J Clin Invest. 2004;  113 1025-1031
  • 90 Aljamali M N, Margaritis P, Schlachterman A et al.. Long-term expression of murine activated factor VII is safe, but elevated levels cause premature mortality.  J Clin Invest. 2008;  118 1825-1834
  • 91 Darby S C, Keeling D M, Spooner R J et al.. The incidence of factor VIII and factor IX inhibitors in the hemophilia population of the UK and their effect on subsequent mortality, 1977–99.  J Thromb Haemost. 2004;  2 1047-1054
  • 92 Schwaab R, Brackmann H H, Meyer C et al.. Haemophilia A: mutation type determines risk of inhibitor formation.  Thromb Haemost. 1995;  74 1402-1406
  • 93 Gouw S C, van der Bom J G, Marijke van den Berg H. Treatment-related risk factors of inhibitor development in previously untreated patients with hemophilia A: the CANAL cohort study.  Blood. 2007;  109 4648-4654
  • 94 Brinkhous K M, Sigman J L, Read M S et al.. Recombinant human factor IX: replacement therapy, prophylaxis, and pharmacokinetics in canine hemophilia B.  Blood. 1996;  88 2603-2610
  • 95 Fields P A, Arruda V R, Armstrong E et al.. Risk and prevention of anti-factor IX formation in AAV-mediated gene transfer in the context of a large deletion of F9.  Mol Ther. 2001;  4 201-210
  • 96 Herzog R W, Mount J D, Arruda V R, High K A, Lothrop Jr C D. Muscle-directed gene transfer and transient immune suppression result in sustained partial correction of canine hemophilia B caused by a null mutation.  Mol Ther. 2001;  4 192-200
  • 97 Herzog R W, Fields P A, Arruda V R et al.. Influence of vector dose on factor IX-specific T and B cell responses in muscle-directed gene therapy.  Hum Gene Ther. 2002;  13 1281-1291
  • 98 Mingozzi F, Hasbrouck N C, Basner-Tschakarjan E et al.. Modulation of tolerance to the transgene product in a nonhuman primate model of AAV-mediated gene transfer to liver.  Blood. 2007;  110 2334-2341
  • 99 Peng B, Ye P, Blazar B R et al.. Transient blockade of the inducible costimulator pathway generates long-term tolerance to factor VIII after nonviral gene transfer into hemophilia A mice.  Blood. 2008;  112 1662-1672

John E.J RaskoM.B.B.S. (Hons) Ph.D. F.R.C.P.A. F.R.A.C.P. 

Gene and Stem Cell Therapy Program, Centenary Institute, Locked Bag No. 6

Newtown, NSW 2042, Australia

Email: j.rasko@centenary.usyd.edu.au