Subscribe to RSS
DOI: 10.1055/s-0029-1215206
© Georg Thieme Verlag KG Stuttgart · New York
Prognostische Bedeutung der Stressechokardiografie
Publication History
Publication Date:
15 October 2009 (online)
Abstract
Cost effective diagnostic detection of coronary artery disease using stress echocardiography combines echocardiography with a physical, pharmacological, or in rare cases pacing stress. Myocardial ischemia is detected by the induction of a transient worsening in regional and potentially global systolic and diastolic function during stress. The diagnostic and prognostic accuracy of stress echocardiography is similar to that of radionuclide stress perfusion imaging, providing a radiation-free, validated diagnostic modality with a favourable cost/risk-benefit ratio. To generate cardiac stress, semisupine exercise, dobutamine or vasodilator agents are commonly used. Both exercise and pharmacological stress echocardiography are suitable to overcome diagnostic limitations in the patient subgroups of females and diabetics, thus increasing the sensitivity of the stress test compared to conventional ergometric ECG based tests. Recent meta analyses have demonstrated that stress echo tests have a high negative predictive value as high as SPECT over periods up to 30 months. Contrast agents are approved for left ventricular opacification, improving the accuracy of regional and global ventricular function analysis. The additional value of myocardial perfusion contrast echocardiography is currently under investigation in two multicenter international trials. New emerging fields that are not yet applicable for clinical routine stress echocardiography include Doppler and speckle analysis of the left-ventricular myocardium and multidimensional image acquisition plus short axis multislice image processing under stress conditions. To date, stress echocardiography is one of the most cost-effective and risk-effective diagnostic cardiac modalities with prognostic implications for patients with coronary artery disease.
Kernaussagen
-
Hauptindikationen der Stressechokardiografie unter Prognosegesichtspunkten ist die Beurteilung von bedeutsamen Stenosen bei Patienten mit einer KHK. Es können Patienten bestimmt werden, die von einer therapeutischen Revaskularisierung profitieren. Die Stressechokardiografie ist eine strahlenfreie, validierte und risikoarme Methode. Belastungen können ergometrisch und pharmakologisch eine signifikante Myokardischämie darstellen oder mit einer hohen Sicherheit ausschließen.
-
Die Sensitivität der Stressechokardiografie wird von Anzahl und Lokalisation der Stenosen bestimmt. Drei-Gefäß-KHK und RIVA-Stenosen werden mit sehr hoher Sensitivität erkannt. Bei peripheren Stenosen und Eingefäßerkrankungen von RCx und RCA ist die Sensitivität geringer.
-
Negative Stressechokardiografien haben für alle Risikogruppen eine gute Prognose. Positive Stressechokardiografien mit größeren Wandbewegungsarealen und bei Verschlechterung der globalen systolischen Funktion identifizieren ein Hochrisikokollektiv, das von einer gerichteten Revaskularisierung stark profitiert.
-
Die Methode ist für Frauen und Patienten mit Diabetes mellitus gut geeignet und ermöglicht eine diagnostische Ausbelastung durch pharmakologische Verfahren in beiden Gruppen.
-
Neue Ansätze zur weiteren Verbesserung der Testreproduzierbarkeit sind der Einsatz von Doppler- und Gewebetexturanalysen und der Einsatz von Kontrastmitteln zur Konturverbesserung des Endokards und zur Perfusionsanalyse des Myokards.
Literatur
- 1 Shaw L J, Hachamovitch R, Berman D S. et al . The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. J Am Coll Cardiol. 1999; 33 661-669
- 2 Jemal A, Ward E, Hao Y, Thun M. Trends in the leading causes of death in the United States, 1970 – 2002. JAMA. 2005; 294 1255-1259
- 3 Fox C S, Evans J C, Larson M G. et al . Temporal trends in coronary artery disease mortality and sudden cardiac death from 1950 to 1999: the Framingham Heart Study. Circulation. 2004; 110 522-527
- 4 Pellikka P A, Nagueh S F, Elhendy A A. et al . American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr. 2007; 20 1021-1041
- 5 Arruda-Olson A M, Juracan E M, Mahoney D W. et al . Prognostic value of exercise echocardiography in 5 798 patients: is there a gender difference?. J Am Coll Cardiol. 2002; 39 625-631
- 6 Bangalore S, Yao M HA, Puthumana J, Chaudhry F A. Incremental prognostic value of stress echocardiography over clinical and stress electrocardiographic variables in patients with prior myocardial infarction: „Warranty time” of a normal stress echocardiogram. Echocardiography. 2006; 23 455-464
- 7 Picano E, Alaimo A. et al . Noninvasive pacemaker stress echocardiography for diagnosis of coronary artery disease: a multicenter study. J Am Coll Cardiol. 2002; 40 1305-1310
- 8 von Bardeleben R S, Münzel T, Nixdorff U. Diagnostik und Risikostratifikation der koronaren Herzkrankheit (KHK): Aktuelle Bedeutung der Stressechokardiographie. Clin Res Cardiol. 2007; (Suppl. 2) V/18-27
- 9 Chiou K R, Huang W C. et al . Real-time dobutamine stress myocardial contrast echocardiography for detecting coronary artery disease: correlating abnormal wall motion and disturbed perfusion. Can J Cardiol. 2004; 20 1237-1243
- 10 Dolan M S, Riad K, El-Shafei A E. et al . Effect of intravenous contrast for left ventricular opacification and border definition on sensitivity and specificity of dobutamine stress echocardiography compared with coronary angiography in technically difficult patients. Am Heart J. 2001; 142 908-915
- 11 Elhendy A, O’Leary E L, Xie F, Mc G rain. et al . Comparative accuracy of real-time myocardial contrast perfusion imaging and wall motion analysis during dobutamine stress echocardiography for the diagnosis of coronary artery disease. J Am Coll Cardiol. 2004; 44 2185-2191
- 12 Frieske R, Kühl H, Yuan D. et al . Verbesserte Endokarderkennung der Dobutamin-Belastungsechokardiographie durch Einsatz des Linksherzkontrastmittels BY 963. Z Kardiol. 2000; 89 186-194
- 13 Hoffmann R, von Bardeleben S, Kasprzak J D. et al . Analysis of regional left ventricular function by cineventriculography, cardiac magnetic resonance imaging, and unenhanced and contrast-enhanced echocardiography: a multicenter comparison of methods. J Am Coll Cardiol. 2006; 47 121-128
- 14 Hoffmann R, Borges A C, Kasprzak J D. et al . Analysis of myocardial perfusion or myocardial function for detection of regional myocardial abnormalities. An echocardiographic multicenter comparison study using myocardial contrast echocardiography and 2D echocardiography. Eur J Echocardiogr. 2007; 8 438-448
- 15 Hanekom L, Cho G Y, Leano R. et al . Comparsion of two-dimensional speckle and tissue Doppler strain measurement during dobutamine stress echocardiography: an angiographic correlation. Eur Heart J. 2007; 28 1765-1772
- 16 Nixdorff U, Küfner C, Achenbach S. et al . Head-to-head comparison of dobutamine stress echocardiography and cardiac computed tomography for the detection of significant coronary artery disease. Cardiology. 2008; 110 81-86
- 17 Ramakrishna G R, Breen J F, Mulvagh S L. et al . Relationship between coronary artery calcification detected by electron-beam computed tomography and abnormal stress echocardiography. J Am Coll Cardiol. 2006; 48 2125-2131
- 18 Kertai M D, Boersma E, Bax J J. et al . A meta-analysis comparing the prognostic accuracy of six diagnostic tests for predicting perioperative cardiac risk in patients undergoing major vascular surgery. Heart. 2003; 89 1327-1334
- 19 Kim C, Kwok Y S, Heagerty P, Redberg R. Pharmacologic stress testing for coronary disease diagnosis: A meta-analysis. Am Heart J. 2001; 142 934-944
- 20 Shaw L J, Polk D, Merz C N. Assessing mature technology: What is the effect of high-quality risk stratification evidence with exercise echocardiography and single-photon emission computed tomography imaging?. J Am Coll Cardiol. 2007; 49 238-239
- 21 Bangalore S, Gopinath D, Yao S S, Chaudhry F A. Risk stratification using stress echocardiography: incremental prognostic value over historic, clinical, and stress electrocardiographic variables across a wide spectrum of bayesian pretest probabilities for coronary artery disease. J Am Soc Echocardiogr. 2007; 20 244-252
- 22 Metz L D, Beattie M, Hom R. et al . The prognostic value of normal exercise MPI and exercise echocardiography: a meta-analysis. JACC. 2007; 49 227-237
- 23 Nagel E, Lehmkuhl H B, Bocksch W. et al . Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation. 1999; 99 763-770
- 24 Jeetley P, Burden L, Senior R. Stress echocardiography is superior to exercise ECG in the risk stratification of patients with acute chest pain with negative Troponin. Eur J Echocardiogr. 2006; 7 155-164
- 25 Yao S, Qureshi E, Sherrid M V, Chaudry F A. Risk stratification and prognosis in patients with known or suspected ischemic heart disease. J Am Coll Cardiol. 2003; 42 1084-1090
- 26 Boden W E, O’Rourke R A. et al . for the COURAGE Trial Research Group. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007; 356 1503-1516
- 27 Erne P, Schönenberger A W, Burckhardt D. et al . Effects of percutaneous coronary interventions in silent ischemia after myocardial infarction: The SWISS II randomized controlled trial. JAMA. 2007; 297 1985-1991
- 28 Scherhag A, Pfleger S, Haase K K. et al . Diagnostic value of stress echocardiography for the detection of restenosis after PTCA. Int J Cardiol. 2004; 98 1971-1977
- 29 Naqvi T, Goel R, Forrester J, Siegel R. Myocardial contractile reserve on dobutamine echocardiography predicts late spontaneous improvement in cardiac function in patients with recent onset idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1999; 34 1537-1544
- 30 Schinkel A F, Poldermans D, Rizello V. et al . Why do patients with ischemic cardiomyopathy and a substantial amount of viable myocardium not always recover in function after revascularization?. J Thorac Cardiovasc Surg. 2004; 127 385-390
- 31 Mieres J H, Shaw L J, Arai A. et al . Role of noninvasive testing in the clinical evaluation of women with suspected coronary artery disease: Consensus statement from the Cardiac Imaging Committee, Council on Clinical Cardiology, and the Cardiovascular Imaging and Intervention Committee, Council on Cardiovascular Radiology and Intervention, American Heart Association. Circulation. 2005; 111 682-696
- 32 Biagini E, Elhendy A, Bax J J, Rizzello V. et al . Seven-year follow-up after dobutamine stress echocardiography: impact of gender on prognosis. J Am Coll Cardiol. 2005; 45 93-97
- 33 Geleijnse M L, Krenning B J, Soliman O I. et al . Dobutamine stress echocardiography for the detection of coronary artery disease in women. Am J Cardiol. 2007; 99 714-717
- 34 Kühl H, Schreckenberg M, Rulands D. et al . High-resolution transthoracic real-time three-dimensional echocardiography: quantitation of cardiac volumes and function using semi-automatic border detection and comparison with cardiac magnetic resonance imaging. J Am Coll Cardiol. 2004; 43 2083-2090
- 35 Moir S, Haluska B, Jenkins C. et al . Incremental benefit of myocardial contrast to combine dipyridamole-exercise stress echocardiography for the assessment of coronary artery disease. Circulation. 2004; 110 1108-1113
- 36 von Bardeleben R S, Kühl H P, Mohr-Kahaly S, Franke A. Second-generation real-time three-dimensional echocardiography: Finally on its way into clinical cardiology?. Z Kardiol. 2004; 93 56-64
- 37 Yang H, Pellikka P, McCully R. et al . Role of biplane and biplane echocardiographically guided 3-dimensional echocardiography during dobutamine stress echocardiography. J Am Soc Echocardiogr. 2006; 19 1136-1143
- 38 Sicari R. et al . Stress Echocardiography Expert Consensus Statement – Executive Summary: European Association of Echocardiography (EAE) (a registered branch of the ESC). European Heart Journal. 2009; 30 278-289
Dr. med. Ralph Stephan von Bardeleben
2. Medizinische Klinik und Poliklinik Kardiologie
Johannes-Gutenberg-Universität Mainz
Langenbeckstraße 1
55131 Mainz
Email: von.Bardeleben@ukmainz.de