Am J Perinatol 2009; 26(7): 523-527
DOI: 10.1055/s-0029-1215431
© Thieme Medical Publishers

Neonate Exposure to Thimerosal Mercury from Hepatitis B Vaccines

José G. Dórea1 , 2 , Rejane C. Marques2 , Katiane G. Brandão2
  • 1Universidade de Brasília, Brasília, DF, Brazil
  • 2Fundação Universidade Federal de Rondônia, Porto Velho, RO, Brazil
Further Information

Publication History

Publication Date:
12 March 2009 (online)

ABSTRACT

Infant exposure to ethylmercury (EtHg) has not only increased but is starting earlier as a result of the current immunization schedule that uses thimerosal-containing vaccines (TCVs). Although vaccination schedule varies considerably between countries, infants in less-developed countries continue to be exposed to EtHg derived from more affordable TCVs. We studied the exposure of newborns to EtHg from hepatitis B vaccines; hospital records (21,685) were summarized for the years 2001 to 2005 regarding date of birth, vaccination date, and birth weight. Most of the vaccinations occurred in the first 24 hours postdelivery; over the 5 years, there was an increase in vaccinations within hours of birth (same day), from 7.4% (2001) to 87.8% (2005). Nearly 94.6% of infants are now being vaccinated within the first 24hours. Range of mercury exposure spread from 4.2 to 21.1 μg mercury/kg body weight for those receiving TCVs with the highest thimerosal concentration; these exposure levels are conservative for 2% of children receiving vaccines within 2 to 3 postnatal days, when they are still going through physiological postnatal weight loss. Because of the particular timing (transitioning from in utero to ex utero metabolism) and specific aspects of exposure (i.e., parenteral mode, bypassing gastroenteric barriers) and dose (related to vaccine manufacturer and with variation in birth weight), this study reveals critical issues that can modulate toxicokinetics and toxicodynamics of organomercurials in neonates.

REFERENCES

  • 1 Dórea J G. Exposure to mercury during the first six months via human milk and vaccines: modifying risk factors.  Am J Perinatol. 2007;  24 387-400
  • 2 van't Veen A J. Vaccines without thiomersal: why so necessary, why so long coming?.  Drugs. 2001;  61 565-572
  • 3 Magos L, Brown A W, Sparrow S, Bailey E, Snowden R T, Skipp W R. The comparative toxicology of ethyl- and methylmercury.  Arch Toxicol. 1985;  57 260-267
  • 4 Harry G J, Harris M W, Burka L T. Mercury concentrations in brain and kidney following ethylmercury, methylmercury and thimerosal administration to neonatal mice.  Toxicol Lett. 2004;  154 183-189
  • 5 Trasande L, Landrigan P J, Schechter C. Public health and economic consequences of methyl mercury toxicity to the developing brain.  Environ Health Perspect. 2005;  113 590-596
  • 6 Cohen J T, Bellinger D C, Shaywitz B A. A quantitative analysis of prenatal methyl mercury exposure and cognitive development.  Am J Prev Med. 2005;  29 353-365
  • 7 Palmer R F, Blanchard S, Stein Z, Mandell D, Miller C. Environmental mercury release, special education rates, and autism disorder: an ecological study of Texas.  Health Place. 2006;  12 203-209
  • 8 Axelrad D A, Bellinger D C, Ryan L M, Woodruff T J. Dose–response relationship of prenatal mercury exposure and IQ: an integrative analysis of epidemiologic data.  Environ Health Perspect. 2007;  115 609-615
  • 9 Grandjean P, Weihe P, White R F et al.. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury.  Neurotoxicol Teratol. 1997;  19 417-428
  • 10 Magos L. Neurotoxic character of thimerosal and the allometric extrapolation of adult clearance half-time to infants.  J Appl Toxicol. 2003;  23 263-269
  • 11 Verstraeten T, Davis R L, DeStefano F Vaccine Safety Datalink Team et al. Safety of thimerosal-containing vaccines: a two-phased study of computerized health maintenance organization databases.  Pediatrics. 2003;  112 1039-1048
  • 12 Heron J, Golding J. ALSPAC Study Team . Thimerosal exposure in infants and developmental disorders: a prospective cohort study in the United Kingdom does not support a causal association.  Pediatrics. 2004;  114 577-583
  • 13 Thompson W W, Price C, Goodson B Vaccine Safety Datalink Team et al. Early thimerosal exposure and neuropsychological outcomes at 7 to 10 years.  N Engl J Med. 2007;  357 1281-1292
  • 14 Geier D A, Geier M R. A meta-analysis epidemiological assessment of neurodevelopmental disorders following vaccines administered from 1994 through 2000 in the United States.  Neuroendocrinol Lett. 2006;  27 401-413
  • 15 Young H A, Geier D A, Geier M R. Thimerosal exposure in infants and neurodevelopmental disorders: an assessment of computerized medical records in the Vaccine Safety Datalink.  J Neurol Sci. 2008;  271 110-118
  • 16 Marques R C, Bernardi J V, Dórea J G, Bastos W R, Malm O. Principal component analysis and discrimination of variables associated with pre- and post-natal exposure to mercury.  Int J Hyg Environ Health. 2008;  211 606-614
  • 17 Gallagher C, Goodman M. Hepatitis B triple series vaccine and developmental disability in US children aged 1–9 years.  Toxicol Environ Chem. 2008;  90 997-1008
  • 18 Dórea J G, Marques R C. Modeling neurodevelopment outcomes and ethylmercury exposure from thimerosal-containing vaccines.  Toxicol Sci. 2008;  103 414-415
  • 19 Marques R C, Dórea J G, Manzatto A G, Bastos W R, Bernardi J V, Malm O. Time of perinatal immunization, thimerosal exposure and neurodevelopment at 6 months in breastfed infants.  Acta Paediatr. 2007;  96 864-868
  • 20 Zheng W, Dreskin S C. Thimerosal in influenza vaccine: an immediate hypersensitivity reaction.  Ann Allergy Asthma Immunol. 2007;  99 574-575
  • 21 Coulter D M. Prolactin: a hormonal regulator of the neonatal tissue water reservoir.  Pediatr Res. 1983;  17 665-668
  • 22 Minami T, Oda K, Gima N, Yamazaki H. Effects of lipopolysaccharide and chelator on mercury content in the cerebrum of thimerosal-administered mice.  Environ Toxicol Pharmacol. 2007;  24 316-320
  • 23 Berman R F, Pessah I N, Mouton P R, Mav D, Harry J. Low-level neonatal thimerosal exposure: further evaluation of altered neurotoxic potential in SJL mice.  Toxicol Sci. 2008;  101 294-309
  • 24 Burbacher T M, Shen D D, Liberato N, Grant K S, Cernichiari E, Clarkson T. Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal.  Environ Health Perspect. 2005;  113 1015-1021
  • 25 Hossain M A, Islam M N, Shahidullah M, Akhter H. Pattern of change of weight following birth in the early neonatal period.  Mymensingh Med J. 2006;  15 30-32
  • 26 Metaj M, Laroia N, Lawrence R A, Ryan R M. Comparison of breast- and formula-fed normal newborns in time to first stool and urine.  J Perinatol. 2003;  23 624-628
  • 27 Dollberg S, Lahav S, Mimouni F B. A comparison of intakes of breast-fed and bottle-fed infants during the first two days of life.  J Am Coll Nutr. 2001;  20 209-211
  • 28 Bartelink I H, Rademaker C M, Schobben A F, van den Anker J N. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations.  Clin Pharmacokinet. 2006;  45 1077-1097
  • 29 Pichichero M E, Gentile A, Giglio N et al.. Mercury levels in newborns and infants after receipt of thimerosal-containing vaccines.  Pediatrics. 2008;  121 e208-e214
  • 30 Stajich G V, Lopez G P, Harry S W, Sexson W R. Iatrogenic exposure to mercury after hepatitis B vaccination in preterm infants.  J Pediatr. 2000;  136 679-681
  • 31 Korbas M, Blechinger S R, Krone P H, Pickering I J, George G N. Localizing organomercury uptake and accumulation in zebrafish larvae at the tissue and cellular level.  Proc Natl Acad Sci U S A. 2008;  105 12108-12112
  • 32 Geier M R, Geier D A, Zahalsky A C. A review of hepatitis B vaccination.  Expert Opin Drug Saf. 2003;  2 113-122
  • 33 Eales S J. Hepatitis B vaccine at birth—just another barrier to breastfeeding?.  Aust Midwifery. 2003;  16 4-5
  • 34 McIntyre P, Wood N. Does universal hepatitis B vaccination at birth have a negative impact on breastfeeding?.  Aust Midwifery. 2004;  17 4-5
  • 35 Mansoor O D, Salama P. Should hepatitis B vaccine be used for infants?.  Expert Rev Vaccines. 2007;  6 29-33
  • 36 Bondy S C, Campbell A. Developmental neurotoxicology.  J Neurosci Res. 2005;  81 605-612
  • 37 Wigzell H. Difficulties in replacing mercury as a preservative in bacterial vaccines.  Lakartidningen. 1990;  87 621
  • 38 Mikaeloff Y, Caridade G, Suissa S, Tardieu M. Hepatitis B vaccine and the risk of CNS inflammatory demyelination in childhood.  Neurology. 2008;  , 10.1212/01.wnl.0000335762.42177.07

José G DóreaPh.D. 

C.P.04322 Universidade de Brasília

70919-970, Brasília, DF, Brazil

Email: dorea@rudah.com.br