Pharmacopsychiatry 2009; 42: S79-S86
DOI: 10.1055/s-0029-1216346
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

Neurobiology and Systems Physiology of the Endocannabinoid System

N. Wegener 1 , M. Koch 1
  • 1Brain Research Institute, Department of Neuropharmacology, University of Bremen, Bremen, Germany
Further Information

Publication History

Publication Date:
11 May 2009 (online)

Abstract

Endocannabinoids are synthesised from lipid precursors, are released from postsynaptic neurons in an activity-dependent way, and act as retrograde signalling messengers on specific Gi-protein-coupled cannabinoid (CB1) receptors on presynaptic terminals. Hence, endocannabinoids are in a strategic position to regulate transmitter release. CB1-receptors are abundant on GABAergic, glutamatergic and dopaminergic synapses and play an essential role in a variety of cognitive processes and in the control of behaviour. The endocannabinoid system is not only the target of the psychoactive components of the hemp plant (tetrahydrocannabinol from hashish and marijuana) but has also been exploited for drugs acting as agonists (e.g. dronabinol) or antagonists (e.g. rimonabant) of the CB1-receptor. The former drugs exert orexigenic effects and can be used for the mitigation of anorexia e.g. in cancer patients, but have also been used for the treatment of multiple sclerosis. The latter have been used to treat adipositas. The role of the endocannabinoid system in the development of drug dependence has been discussed controversially, but recent evidence suggests that chronic stimulation of the endocannabinoid system may facilitate drug dependence.

References

  • 1 Ameri A. The effects of cannabinoids on the brain.  Prog Neurobiol. 1999;  58 315-348
  • 2 Andersen SL, Thompson AT, Rutstein M. et al . Dopamine receptor pruning in prefrontal cortex during periadolescent period in rats.  Synapse. 2000;  37 167-169
  • 3 Arseneault L, Cannon M, Witton J. et al . Causal association between cannabis and psychosis: examination of the evidence.  Br J Psychiatry. 2004;  184 110-117
  • 4 Berrendero F, Sepe N, Ramos JA. et al . Analysis of cannabinoid receptor binding and mRNA expression and endogenous cannabinoid contents in the developing rat brain during late gestation and early postnatal period.  Synapse. 1999;  33 181-191
  • 5 Breivogel CS, Childers SR, Deadwyler SA. et al . Chronic Δ9- Tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G-proteins in rat brain.  J Neurochem. 1999;  73 2447-2459
  • 6 Caspi A, Moffitt TE, Cannon M. et al . Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene environment interaction.  Biol Psychiatry. 2005;  57 1117-1127
  • 7 Chen JP, Paredes W, Li J. et al . Delta 9- tetrahydrocannabinol produces naloxone-blockable enhancement of presynaptic basal dopamine efflux in nucleus accumbens of conscious, freely-moving rats as measured by intracerebral microdialysis.  Psychopharmacology. 1990;  101 156-162
  • 8 Childers SR, Deadwyler SA. Role of cyclic AMP in the actions of cannabinoid receptors.  Biochem Pharmacol. 1996;  52 819-827
  • 9 Comings DE, Muhleman D, Gade R. et al . Cannabinoid receptor gene (CNR1): association with i.v. drug use.  Mol Psychiatry. 1997;  2 161-168
  • 10 Demuth DG, Molleman A. Cannabinoid signalling.  Life Sci. 2006;  78 549-563
  • 11 Devane WA, Hanus L, Breuer A. et al . Isolation and structure of a brain constituent that binds to the cannabinoid receptor.  Science. 1992;  258 1946-1949
  • 12 Devane WA, Dysarz 3rd FA, Johnson MR. et al . Determination and characterization of a cannabinoid receptor in rat brain.  Mol Pharmacol. 1988;  34 605-613
  • 13 Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentration in the mesolimbis system of freely moving rats.  Proc Nat Acad Sci USA. 1988;  85 5274-5278
  • 14 Ehrenreich H, Rinn T, Kunert HJ. et al . Specific attentional dysfunction in adults following early start of cannabis use.  Psychopharmacology. 1999;  142 295-301
  • 15 Ellgren M, Spano SM, Hurd YL. Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats.  Neuropsychopharmacology. 2007;  32 607-615
  • 16 Elphick MR, Egertova M. The neurobiology and evolution of cannabinoid signalling.  Phil Trans R Soc Lond. 2001;  356 381-408
  • 17 Fattore L, Cossu G, Martellatto CM. et al . Intravenous self-administration of the cannabinoid CB1 receptor agonist WIN 55,212-2 in rats.  Psychopharmacology. 2001;  156 410-416
  • 18 Ferrguson DM, Boden JM, Horwood LJ. Cannabis use and other illicit drug use: testing the cannabis gateway hypothesis.  Addiction. 2006;  101 556-569
  • 19 French ED, Dillon K, Wu X. Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra.  Neuroreport. 1997;  8 649-652
  • 20 Gaoni Y, Mechoulam R. Isolation, structure and partial synthesis of an active constituent of hashish.  J Am Chem Soc. 1964;  86 1646-1647
  • 21 Gardner EL. Addicitve potential of cannabinoids: the underlying neurobiology.  Chem Phys Lipids. 2002;  121 267-290
  • 22 Geyer MA. Behavioral studies of hallucinogenic drugs in animals: implications for schizophrenia research.  Pharmacopsychiatry. 1998;  31 73-79
  • 23 Geyer MA, Krebs-Thomson K, Braff DL. et al . Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: A decade in review.  Psychopharmacology. 2001;  156 117-154
  • 24 Golub A, Johnson BD. Variations in youthful risks of progression from alcohol and tobacco to marijuana and to hard drugs across generations.  Am J Public Health. 2001;  91 225-232
  • 25 Gong J-P, Oniavi ES, Ishiguro H. et al . Cannabinoid CB2 receptors: Immunhistochemical localization in rat brain.  Brain Res. 2006;  1071 10-28
  • 26 Hall W. Dissecting the causal anatomy of the link between cannabis and other illicit drugs.  Addiction. 2006;  101 472-473
  • 27 Harlan RE, Garcia MM. Drugs of abuse and immediate-early genes in the forebrain.  Mol Neurobiol. 1998;  16 221-267
  • 28 Herkenham M, Lynn AB, Little MD. et al . Cannabinoid receptor localization in brain.  Proc Nat Acad Sci USA. 1991;  87 1932-1936
  • 29 Howlett AC, Barth F, Bonner TI. et al . International Union of Pharmacology. XXVII. Classification of cannabinoid receptors.  Pharmacol Rev. 2002;  54 161-202
  • 30 Iversen L. Cannabis and the brain.  Brain. 2003;  126 1252-1270
  • 31 Katona I, Sperlagh B, Sík A. et al . Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons.  J Neurosci. 1999;  19 4544-4558
  • 32 Kedzior KK, Martin-Iverson MT. Chronic cannabis use is associated with attention- modulated reduction in prepulse inhibition of the startle reflex in healthy humans.  J Psychopharmacol. 2006;  20 471-484
  • 33 Koch M. The neurobiology of startle.  Prog Neurobiol. 1999;  59 107-128
  • 34 Koch M, Fendt M. Startle response modulation as a behavioral tool in neuropharmacology.  Curr Neuropharmacol. 2003;  1 175-185
  • 35 Leweke FM, Giuffrida A, Wurster U. et al . Elevated endogenous cannabinoids in schizophrenia.  Neuroreport. 1999;  10 1665-1669
  • 36 Leweke FM, Giuffrida A, Koethe D. et al . Anandamide levels in cerebrospinal fluid of first-episode schizophrenic patients: impact of cannabis use.  Schizophr Res. 2007;  94 29-36
  • 37 Lichtman AH, Sheikh SM, Loh HH. et al . Opioid and cannabinoid modulation of precipitated withdrawal in Δ9-tetrahydrocannabinol and morphine-dependent mice.  J Pharmacol Exp Ther. 2001;  298 1007-1014
  • 38 Lopez-Moreno JA, Gonzales-Cuevas G, Moreno G. et al . The pharmacology of the endocannabinoid system: functional and structural interactions with other neurotransmitter systems and their repercussions in behavioral addiction.  Addiction Biol. 2008;  13 160-187
  • 39 Lupica CR, Riegel AC, Hoffman AF. Marijuana and cannabinoid regulation of brain reward circuits.  Br J Pharmacol. 2004;  143 227-234
  • 40 Lynskey MT, Heath AC, Bucholz KK. et al . Escalation of drug use in early-onset cannabis users vs. co-twin controls.  JAMA. 2003;  289 427-433
  • 41 Maldonado R, Valverde O. Participation of the opiod system in cannabinoid- induced antinociception and emotional-like responses.  Eur Neuropsychopharmacology. 2003;  13 401-410
  • 42 Martellotta MC, Cossu G, Fattore L. et al . Self-administration of the cannabinoid receptor agonist WIN 55,212-2 in drug-naive mice.  Neuroscience. 1998;  85 327-330
  • 43 Moreira FA, Lutz B. The endocannabinoid system: emotion, learning and addiction.  Addiction Biol. 2008;  13 196-212
  • 44 Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids.  Nature. 1993;  365 61-65
  • 45 Murray RM, Morrison PD, Henquet C. et al . Cannabis, the mind and society: the hash realities.  Nat Rev Neurosci. 2007;  8 885-895
  • 46 Nestler EJ. Molecular basis of long-term plasticity underlying addiction.  Nat Rev Neurosci. 2001;  2 119-128
  • 47 Ohno-Shosaku T, Maejima T, Kano M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals.  Neuron. 2001;  29 729-738
  • 48 O’Shea M, Singh ME, MacGregor IS. et al . Chronic cannabinoid exposure produces lasting memory impairment and increased anxiety in adolescent but not adult rats.  J Psychopharmacol. 2004;  18 502-508
  • 49 O’Shea M, MacGregor IS, Mallet PE. Repeated cannabinoid exposure during perinatal, adolescent or early adult ages produces similar longlasting deficits in object recognition and reduced social interaction in rats.  J Psychopharmacol. 2006;  20 611-621
  • 50 Patel S, Hillard CJ. Cannabinoid-induced Fos expression within A10 dopaminergic neurons.  Brain Res. 2003;  963 15-25
  • 51 Patton GC, Coffey C, Carlin JB. et al . Reverse gateways? Frequent cannabis use as a predictor of tobacco initiation and nicotine dependence.  Addiction. 2005;  100 1518-1525
  • 52 Pertwee RG. Cannabinoid recpetors and pain.  Prog Neurobiol. 2001;  63 569-611
  • 53 Pertwee RG. The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids.  AAPS J. 2005;  7 E625-E654
  • 54 Pertwee RG. Cannabinoid receptor ligands.  Tocris Bioscience Scientific Reviews Series. 2006;  27
  • 55 Piomelli D. The molecular logic of endocannabinoid signalling.  Aust N Z J Psychiatry. 2003;  40 105-113
  • 56 Pistis M, Perra S, Pillolla G. et al . Adolescent exposure to cannabinoids induces long-lasting changes in the response to drugs of abuse of rat midbrain dopamine neurons.  Biol Psychiatry. 2004;  56 86-94
  • 57 Pope Jr HG, Gruber AJ, Hudson JI. et al . Early-onset cannabis use and cognitive deficits: What is the nature of the association?.  Drug Alcohol Depend. 2003;  69 303-310
  • 58 Pugh G, Smith PB, Dombrowski DS. et al . The role of endogeneous opiods in enhancing the antinociception produced by the combination of Δ9- Tetrahydrocannabinol and Morphine in the spinal cord.  J Pharmacol Exp Ther. 1996;  279 608-616
  • 59 Rodriguez de Fonseca F, Ramos JA, Bonnin A. et al . Presence of cannabinoid binding sites in the brain from early postnatal ages.  Neuroreport. 1993;  4 135-138
  • 60 Rodriguez de Fonseca F, Del Arco I, Bermudez-Silva FJ. et al . The endocanabinoid system: Physiology and pharmacology.  Alcohol Alcohol. 2005;  40 2-14
  • 61 Ryberg E, Larsson N, Sjögren S. et al . The orphan receptor GPR55 is a novel cannabinoid receptor.  Br J Pharmacol. 2007;  152 1092-1101
  • 62 Schneider M, Koch M. The cannabinoid agonist WIN 55,212-2 reduces sensorimotor gating and recognition memory in rats.  Behav Pharmacol. 2002;  13 29-37
  • 63 Schneider M, Koch M. Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats.  Neuropsychopharmacology. 2003;  28 1760-1769
  • 64 Schneider M, Koch M. Deficient social and play behavior in juvenile and adult rats after neonatal cortical lesion: Effects of chronic pubertal cannabinoid treatment.  Neuropsychopharmacology. 2005;  30 944-957
  • 65 Schneider M. Puberty as a highly vulnerable developmental period for the consequences of cannabis exposure.  Addiction Biol. 2008;  13 253-263
  • 66 Schneider M, Schömig E, Leweke FM. Acute and chronic cannabinoid treatment differentially affect recognition memory and social behavior in pubertal and adult rats.  Addiction Biol. 2008;  13 345-357
  • 67 Schneider U, Leweke FM, Mueller-Vahl KR. et al . Cannabinoid/anandamide system and schizophrenia: is there evidence for association?.  Pharmacopsychiatry. 1998;  31 110-113
  • 68 Singh ME, MacGregor IS, Mallet PE. Perinatal exposure to Δ9- Tetrahydrocannabinol alters heroin-induced place conditioning and Fos- immunoreactivity.  Neuropsychopharmacology. 2006;  31 58-69
  • 69 Sipe JC, Chiang K, Gerber AL. et al . A missense mutation in human fatty acid amide hydrolase associated with problem drug use.  Proc Nat Acad Sci USA. 2002;  99 8394-8399
  • 70 Spear LP. The adolescent brain and age-related behavioral manifestations.  Neurosci Biobehav Rev. 2000;  24 417-463
  • 71 Swerdlow NR, Geyer MA, Braff DL. Neural circuit regulation of prepulse inhibition of startle in the rat: Current knowledge and future challenges.  Psychopharmacology. 2001;  156 194-215
  • 72 Swerdlow NR, Light GA, Cadenhead KC. et al . Startle gating deficits in a large cohort of patients with schizophrenia: Relationship to medications, symptoms, neurocognition and level of function.  Arch Gen Psychiatry. 2006;  63 1325-1335
  • 73 Tretter F, Scherer J. Schizophrenia, neurobiology and the methodology of systemic modeling.  Pharmacopsychiatry. 2006;  39 S26-S35
  • 74 Valverde O, Noble F, Beslot F. et al . Delta9-Tetrahydrocannabinol releases and facilitates the effect of endogeneous enkephalins:Reduction in morphine withdrawal syndrome without change in rewarding effect.  Eur J Neurosci. 2001;  13 1816-1824
  • 75 Walker JM, Huang SM, Strangman NM. et al . Pain modulation by release of the endogenous cannabinoid anadamide.  Proc Natl Acad Sci USA. 1999;  96 12198-12203
  • 76 Ward AS, Comer SD, Haney M. et al . The effect of a monetary alternative on marijuana self-administration.  Behav Pharmacol. 1997;  8 275-286
  • 77 Wegener N, Kuhnert S, Thüns A. et al . Effects of acute systemic and intra-cerebral stimulation of cannabinoid receptors on sensorimotor gating, locomotion, and spatial memory in rats.  Psychopharmacology. 2008;  198 375-385
  • 78 Wegener N, Koch M. Behavioural disturbances and altered Fos-protein expression in adult rats after chronic pubertal cannabinoid treatment.  Brain Res. 2009;  1253 81-91
  • 79 Wilson RI, Nicoll RA. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses.  Nature. 2001;  410 588-592
  • 80 Winterer G. Cortical microcircuits in schizophrenia – the dopamine hypothesis revisited.  Pharmacopsychiatry. 2006;  39 S68-S71
  • 81 Wiskerke J, Pattij T, Schoffelmeer ANM. et al . The role of CB1 receptors in psychostimulant addiction.  Addiction Biol. 2008;  13 225-238
  • 82 Wu X, French ED. Effects of chronic Δ9-Tetrahydrocannabinol on rat midbrain dopamine neurons: An electrophysiological assessment.  Neuropharmacology. 2000;  39 391-398
  • 83 Zangen A, Solinas M, Ikemoto S. et al . Two brain sites for cannabinoid reward.  J Neurosci. 2006;  26 4901-4907

Correspondence

N. Wegener

Brain Research Institute, Department of Neuropharmacology

University of Bremen

PO Box 330440

28334 Bremen

Germany

Phone: +49/421/2186 29 78

Fax: +49/421/2186 29 84

Email: nwegener@uni-bremen.de