Synthesis 2009(14): 2423-2429  
DOI: 10.1055/s-0029-1216835
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Rhodium Carbenoid Induced [1,2]-Migration in an l-Lyxo-Configured α-Diazo β-Keto Ester: Synthesis of a New Griseolic Acid Analogue

Namdeo N. Bhujbal, K. S. Ajish Kumar, Dilip D. Dhavale*
Department of Chemistry, Garware Research Centre, University of Pune, Pune 411007, India
Fax: +91(20)25691728 ; e-Mail: ddd@chem.unipune.ernet.in;
Further Information

Publication History

Received 10 February 2009
Publication Date:
19 May 2009 (online)

Abstract

An appropriately substituted α-diazo β-keto ester, prepared from d-glucose, on treatment with a catalytic amount of dirhodium tetraacetate gave a strained 1,5-dioxabicyclo[3.3.0]octane ring system with concomitant diastereoselective formation of a quaternary carbon substituted with both an ethoxycarbonyl group and a 2-ethoxy-2-oxoethyl group; the product is a key intermediate in the synthesis of a new griseolic acid analogue.

    References

  • 1 Nakagawa F. Okazaki T. Naito A. Iijima Y. Yamazaki M. J. Antibiot.  1985,  38:  825 
  • 2a Murofushi Y. Kimura M. Kuwano H. Iijima Y. Yamazaki M. Kaneko M. Chem. Pharm. Bull.  1988,  36:  3760 
  • 2b Miyakoshi S. Haruyama H. Shioiri T. Takahashi S. Torikata A. Yamazaki M. J. Antibiot.  1992,  45:  395 
  • 2c Kaneko M. Kimura M. Murofushi Y. Yasumoto T. Iijima Y. Yamazaki M. Nucleosides Nucleotides  1992,  11:  865 
  • 3a Pickering L. Nair V. Nucleosides Nucleotides  1996,  15:  1751 
  • 3b Pickering L. Nair V. Nucleosides Nucleotides  1997,  16:  1435 
  • 4a Iijima Y. Nakagawa F. Handa S. Oda T. Naito A. Yamezaki M. FEBS Lett.  1985,  192:  179 
  • 4b Murofushi Y. Kimura M. Iijima Y. Yamazaki M. Kaneko M. Chem. Pharm. Bull.  1987,  35:  1036 
  • 4c Murofushi Y. Kimura M. Kuwano H. Iijima Y. Mitsuo Y. Kaneka M. Nucleic Acids Symp. Ser.  1986,  17:  45 
  • 4d Murofushi Y. Kimura M. Iijima Y. Yamazaki M. Kaneka M. Chem. Pharm. Bull.  1987,  35:  4442 
  • 4e Murofushi Y. Kimura M. Iijima Y. Yamazaki M. Kaneka M. Chem. Pharm. Bull.  1988,  36:  1309 
  • 5a Tulshian D. Doll RJ. Stansberry MF. McPhail AT. J. Org. Chem.  1991,  56:  6819 
  • 5b Tulshian D. Czarniecki M. Doll RJ. Ahn HS. J. Med. Chem.  1993,  36:  1210 
  • 5c Tulshian D. Czarniecki M. J. Am. Chem. Soc.  1995,  117:  7009 
  • 6 Knapp S. Madduru MR. Lu Z. Morriello GJ. Emge TJ. Doss GA. Org. Lett.  2001,  3:  3583 
  • 7a Dhavale DD. Desai VN. Saha NN. J. Chem. Soc., Perkin Trans. 1  , 
  • 7b Dhavale DD. Karche NP. Jachak SM. J. Org. Chem.  2001,  66:  6323 
  • For general reviews of rhodium carbenoids see:
  • 7c Adams J. Spero DM. Tetrahedron  1991,  47:  1765 
  • 7d Padwa A. Krumpe KE. Tetrahedron  1992,  48:  5385 
  • 7e Ye T. McKervey MA. Chem. Rev.  1994,  94:  1091 
  • 7f Padwa A. Weingarten MD. Chem. Rev.  1996,  96:  223 
  • 7g Doyle MP. Forbes DC. Chem. Rev.  1998,  98:  911 
  • 7h Sulikowski GA. Cha KL. Sulikowski MM. Tetrahedron: Asymmetry  1998,  9:  3145 
  • 7i Doyle MP. Acc. Chem. Res.  1986,  19:  348 
  • 7j Pirrung MC. Morehead AT. J. Am. Chem. Soc.  1994,  116:  8991 
  • 7k Taber DF. Green JH. Zhang W. Song R. J. Org. Chem.  2000,  65:  5436 
  • 8 Karche NP. Jachak SM. Dhavale DD. J. Org. Chem.  2003,  68:  4531 
  • 9 Slessor KN. Tracey AS. Can. J. Chem.  1969,  47:  3989 
  • The conversion of enol acetate 2 into gulose derivative 3a by the reported procedures gave a low yield (17%). Various literature methods were attempted:
  • 10a

    reduction with NaBH4 resulted in the isolation of 15% of gulose 3b;

  • 10b

    reaction of 2 with NaBH3CN led to the recovery of the starting compound; and

  • 10c

    diimide reduction afforded an inseparable mixture of products. See ref. 9.

  • 12a Dhavale D. Bhujbal N. Joshi P. Desai S. Carbohydr. Res.  1994,  263:  303 
  • 12b

    The ¹H and ¹³C NMR spectra of 5 showed additional signals (<10%) due to the presence of the enol form.

  • 17a Vorbrüggen H. Krolikiewicz K. Bennua B. Chem. Ber.  1981,  114:  1234 
  • 17b Vorbrüggen H. Ruh-Polenz C. Org. React.  2000,  55:  1 
11

Selective hydrolysis of the 5,6-O-isopropylidene group in 3c was possible probably because of the α-orientation of the 5,6-diol in the furanose ring; transfer of a proton from the protonated oxygen at the C-6 carbon to the C-1 acetonide facilitates the 1,2-acetonide deprotection competitively. Attempts with various other acidic reagents, such as 10% H2SO4, CuCl2˙2H2O, 30% HClO4, or acidic resin (Indion 140), failed to give good yields.

13

The unstable nature of compound 7 precluded further characterization. At this stage, attempts were made to convert the keto compound 7 into one with an olefinic functionality at the ring junction. Thus, attempts at the reaction of 7 by using the Shapiro protocol (SO2Cl2 and POCl3) led to a complex mixture. Attempts to activate the hydroxyl functionality by using mesyl chloride and subsequent treatment with base under reflux were also unsuccessful.

14

Our attempts to isolate the other diastereomer (C-5β-OH) in a pure form were unsuccessful.

15

In the ¹H NMR spectrum of 9, the C-5 appeared at δ = 5. 5 as a doublet (J 5,4 = 5.00 Hz). In 1D NOSEY irradiation, one of the C-7 methylene protons at δ = 2.48 showed a NOE with H-3, H-4, H-5, indicating a syn-relationship between the
-CCH2COOEt group and the sugar ring protons, and confirming our earlier assignment.

16

The ¹H NMR spectrum of 10 shows the presence of an anomeric mixture in the ratio 1:15 in favor of the β-anomer.