Synthesis 2009(21): 3611-3616  
DOI: 10.1055/s-0029-1216979
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

A Short and Convenient Synthesis of Enantiopure cis- and trans-4-Hydroxypipecolic Acid

Ernesto G. Occhiato*a, Dina Scarpia, Antonio Guarnaa, Silvia Tabassob, Annamaria Deagostinob, Cristina Prandi*b
a Dipartimento di Chimica Organica ‘U. Schiff’, Università di Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
e-Mail: ernesto.occhiato@unifi.it;
b Dipartimento di Chimica Generale e Chimica Organica, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy
e-Mail: cristina.prandi@unito.it;
Further Information

Publication History

Received 26 June 2009
Publication Date:
28 August 2009 (online)

Abstract

The synthesis of (2S,4R)- and (2R,4R)-4-hydroxypipecolic acid has been realized from commercial ethyl (R)-4-cyano-3-hydroxybutanoate through palladium-catalyzed methoxycarbonylation of a 4-hydroxy-substituted lactam-derived vinyl phosphate followed by the stereocontrolled reduction of the enamine double bond. The stereoselective hydrogenation of the suitably 4-hydroxy-protected enantiomer afforded the cis-(2S,4R)-4-hydroxypipecolic acid product, obtained in 66% overall yield over seven steps. The trans-product (42% overall yield over 8 steps) was instead obtained by hydride conjugate addition to the same α,β-unsaturated ester.

    References

  • 1a Romeo JT. Swain LA. Bleecker AB. Phytochemistry  1983,  22:  1615 
  • 1b Schenk VW. Schutte HF. Flora  1963,  153:  426 
  • 2a Cocito C. Microbiol. Rev.  1979,  43:  145 
  • 2b Vanderhaeghe H. Janssen G. Compernolle F. Tetrahedron Lett.  1971,  12:  2687 
  • 3 Clark-Lewis JW. Mortimer PI. Nature  1959,  184:  1234 
  • 4 Aiello A. Fattorusso E. Giordano A. Menna M. Müller WEG. Perović-Ottstadt S. Schröder HC. Bioorg. Med. Chem.  2007,  15:  5877 
  • 5 Gupta RK. Krishnamurti M. Phytochemistry  1979,  18:  2021 
  • 6 Evans SV. Shing TK. Aplin RT. Fellows LE. Fleet GWJ. Phytochemistry  1985,  24:  2593 
  • 7a Copeland TD. Wondrak EM. Toszer J. Roberts MM. Oroszlan S. Biochem. Biophys. Res. Commun.  1990,  169:  310 
  • 7b Dragovich PS. Parker JE. French J. Inbacuan M. Kalish VJ. Kissinger CR. Knighton DR. Lewis CT. Moomaw EW. Parge HE. Pelletier LAK. Prins TJ. Showalter RE. Tatlock JH. Tucker KD. Villafranca JE. J. Med. Chem.  1996,  39:  1872 
  • 7c Gillard J. Abraham A. Anderson PC. Beaulieu PL. Bogri T. Bousquet Y. Grenier L. Guse Y. Lavellée P. J. Org. Chem.  1996,  61:  2226 
  • 7d Ho B. Zabriskie TM. Bioorg. Med. Chem. Lett.  1998,  8:  739 
  • 7e Skiles JW. Giannousis PP. Fales KR. Bioorg. Med. Chem. Lett.  1996,  6:  963 
  • 8a Ornstein PL. Schoepp DD. Arnold MB. Leander JD. Lodge D. Paschal JW. Elzey T. J. Med. Chem.  1991,  34:  90 
  • 8b Hays SJ. Malone TC. Johnson G. J. Org. Chem.  1991,  56:  4084 
  • 9a Anderson PC, Soucy F, Yoakim C, Lavallée P, and Beaulieu PL. inventors; US  5,545. 
  • 9b Lamarre D. Croteau G. Wardrop E. Bourgon L. Thibeault D. Clouette C. Vaillancourt M. Cohen E. Pargellis C. Yoakim C. Anderson PC. Antimicrob. Agents Chemother.  1997,  41:  965 
  • 10 Bellier B. Da Nascimiento S. Meudal H. Gincel E. Roques BP. Garbay C. Bioorg. Med. Chem. Lett.  1998,  8:  1419 
  • For a recent review on the asymmetric synthesis of pipecolic acids and derivatives see:
  • 11a Kadouri-Puchot C. Comesse S. Amino Acids  2005,  29:  101 
  • 11b Cordero FM. Bonollo S. Machetti F. Brandi A. Eur. J. Org. Chem.  2006,  3235 
  • 12a Sun C.-S. Lin Y.-S. Hou D.-R. J. Org. Chem.  2008,  73:  6877 
  • 12b Lloyd RC. Lloyd MC. Smith MEB. Holt KE. Swift JP. Keene PA. Taylor SJC. McCague R. Tetrahedron  2004,  60:  717 
  • 12c Marin J. Didierjean C. Aubry A. Casimir J.-R. Briand J.-P. Guichard G. J. Org. Chem.  2004,  69:  130 
  • 12d Celestini P. Danieli B. Lesma G. Sacchetti A. Silvani A. Passarella D. Virdis A. Org. Lett.  2002,  4:  1367 
  • 12e Greshock TJ. Funk RL. J. Am. Chem. Soc.  2002,  124:  754 
  • 12f Agami C. Bisaro F. Comesse S. Guesné S. Kadouri-Puchot C. Morgentin R. Eur. J. Org. Chem.  2001,  2385 
  • 12g Sabat M. Johnson CR. Tetrahedron Lett.  2001,  42:  1209 
  • 12h Davis FA. Fang T. Chao B. Burns DM. Synthesis  2000,  2106 
  • 12i Brooks CA. Comins DL. Tetrahedron Lett.  2000,  41:  3551 
  • 12j Haddad M. Larchevêque M. Tetrahedron: Asymmetry  1999,  10:  4231 
  • 12k Di Nardo C. Varela O. J. Org. Chem.  1999,  64:  6119 
  • 12l Golubev A. Sewald N. Burger K. Tetrahedron Lett.  1995,  36:  2037 
  • 13 Occhiato EG. Scarpi D. Guarna A. Eur. J. Org. Chem.  2008,  524 
  • 14a Anelli PL. Fedeli F. Gazzotti O. Lattuada L. Lux G. Rebasti F. Bioconjugate Chem.  1999,  10:  137 
  • 14b Chen H. Feng Y. Xu Z. Ye T. Tetrahedron  2005,  61:  11132 
  • For a review see:
  • 16a Occhiato EG. Mini-Rev. Org. Chem.  2004,  1:  149 
  • Recent progresses in the use of heterocyclic-derived vinyl phosphates:
  • 16b Claveau E. Gillaizeau I. Blu J. Bruel A. Coudert G. J. Org. Chem.  2007,  72:  4832 ; and references therein
  • 16c Lo Galbo F. Occhiato EG. Guarna A. Faggi C. J. Org. Chem.  2003,  68:  6360 
  • 17 Cacchi S. Morera E. Ortar G. Tetrahedron Lett.  1985,  26:  1109 
  • 19 Kaisalo LH. Hase TA. Tetrahedron Lett.  2001,  42:  7699 
  • 20 Crabtree RH. Davis MW. J. Org. Chem.  1986,  51:  2655 ; The reaction was carried out in CH2Cl2 under H2 at 1 atm (no conversion after 24 h) and 50 atm. In the latter case we observed a certain degree of conversion after 24 h (40%) but the facial selectivity was poor (ratio trans/cis ˜3:2)
  • 22a Herdeis C. Engel W. Arch. Pharm. (Weinheim)  1993,  326:  297 
  • 22b Herdeis C. Engel W. Arch. Pharm. (Weinheim)  1992,  325:  419 
  • Compound (2R,4R)-13, possessing trans-stereochemistry, is easily differentiated by ¹H NMR from its cis-isomer especially as the axially oriented proton on C4 is now shielded from δ = 4.15 to 3.70. Moreover in the trans-compound there is an NOE enhancement between H4 and H6axial. Enantiopure cis-isomer (2S,4R)-13 has been already prepared by us (see ref. 13) and, in its racemic form, by Hiemstra and Speckamp. See:
  • 24a Esch PM. de Boer RF. Hiemstra H. Boska IM. Speckamp WN. Tetrahedron  1991,  47:  4063 
  • 24b Esch PM. Boska IM. Hiemstra H. de Boer RF. Speckamp WN. Tetrahedron  1991,  47:  4039 
  • 25 Bartali L. Scarpi D. Guarna A. Prandi C. Occhiato EG. Synlett  2009,  913 
  • 26a Agami C. Couty F. Poursoulis M. Vaissermann J. Tetrahedron  1992,  48:  431 
  • 26b Golubev AS. Sewald N. Burger K. Tetrahedron  1996,  52:  14757 
15

Purification is not necessary, but a much cleaner lactam is obtained if the protected nitrile is purified by chromatography.

18

Elimination of ROH to give an α,β,γ,δ-unsaturated ester has been sometime observed by us in the presence of acids, even when compound 10 was stored in fridge and traces of acids were present. The same elimination occurs with phosphate 9.

21

Compounds trans-12a, trans-12b, and trans-12c ¹³ are easily differentiated from the corresponding cis-compounds by ¹H NMR analysis. In trans-compounds, the H2 is shifted downfield [trans-12a: δ = 5.02 and 4.86 (two rotamers); trans-12b: δ = 5.06 and 4.91 (two rotamers); trans-12c: δ = 4.98 and 4.83 (two rotamers)] and H6axial is upfield shifted (˜3.00 ppm in trans-12a,b,c) compared to the corresponding protons in the cis-isomers: H2 resonates at cis-12a: δ = 4.80 and 4.64, cis-12b: δ = 4.77 and 4.62, cis-12c: δ = 4.78 and 4.63; H6axial resonates for cis-12a-c at ca. δ = 3.45. The same applies to the corresponding alcohols: in trans-compound 13 H2 resonates at δ = 5.04 and 4.90 (two rotamers) and H6axial at ca. δ = 3.0. In the corresponding cis-isomer,¹³ H2 resonates at δ = 4.85 and 4.70 (two rotamers) and H6axial is shifted downfield to δ = 3.4.

23

Compound 14 was recovered only in traces after chromatography as it probably decomposed in part. Compound 14 has a diagnostic downfield shifted H4 proton to δ = 4.97, in accordance with the value (δ = 4.90-5.00) reported for the analogous N-tosyl and N-Cbz compounds (see ref. 22). 14: ¹H NMR (200 MHz, CDCl3): δ = 4.97 (m, 1 H), 4.90-4.70 (br m, 1 H), 4.30-4.00 (br m, 1 H), 3.74 (s, 3 H), 3.35-3.15 (br m, 1 H), 2.55-2.40 (m, 1 H), 2.40-2.37 (m, 1 H), 2.14-2.05 (m, 1 H), 1.98-1.85 (m, 1 H).