Abstract
The synthesis of (2S ,4R )- and (2R ,4R )-4-hydroxypipecolic acid has been realized
from commercial ethyl (R )-4-cyano-3-hydroxybutanoate
through palladium-catalyzed methoxycarbonylation of a 4-hydroxy-substituted
lactam-derived vinyl phosphate followed by the stereocontrolled
reduction of the enamine double bond. The stereoselective hydrogenation
of the suitably 4-hydroxy-protected enantiomer afforded the cis -(2S ,4R )-4-hydroxypipecolic acid product, obtained
in 66% overall yield over seven steps. The trans -product
(42% overall yield over 8 steps) was instead obtained by
hydride conjugate addition to the same α,β-unsaturated
ester.
Key word
amino acids - carbonylations - coupling - lactams - palladium
References
<A NAME="RZ14009SS-1A">1a </A>
Romeo JT.
Swain LA.
Bleecker AB.
Phytochemistry
1983,
22:
1615
<A NAME="RZ14009SS-1B">1b </A>
Schenk VW.
Schutte HF.
Flora
1963,
153:
426
<A NAME="RZ14009SS-2A">2a </A>
Cocito C.
Microbiol. Rev.
1979,
43:
145
<A NAME="RZ14009SS-2B">2b </A>
Vanderhaeghe H.
Janssen G.
Compernolle F.
Tetrahedron
Lett.
1971,
12:
2687
<A NAME="RZ14009SS-3">3 </A>
Clark-Lewis JW.
Mortimer PI.
Nature
1959,
184:
1234
<A NAME="RZ14009SS-4">4 </A>
Aiello A.
Fattorusso E.
Giordano A.
Menna M.
Müller WEG.
Perović-Ottstadt S.
Schröder HC.
Bioorg.
Med. Chem.
2007,
15:
5877
<A NAME="RZ14009SS-5">5 </A>
Gupta RK.
Krishnamurti M.
Phytochemistry
1979,
18:
2021
<A NAME="RZ14009SS-6">6 </A>
Evans SV.
Shing TK.
Aplin RT.
Fellows LE.
Fleet GWJ.
Phytochemistry
1985,
24:
2593
<A NAME="RZ14009SS-7A">7a </A>
Copeland TD.
Wondrak EM.
Toszer J.
Roberts MM.
Oroszlan S.
Biochem.
Biophys. Res. Commun.
1990,
169:
310
<A NAME="RZ14009SS-7B">7b </A>
Dragovich PS.
Parker JE.
French J.
Inbacuan M.
Kalish VJ.
Kissinger CR.
Knighton DR.
Lewis CT.
Moomaw EW.
Parge HE.
Pelletier LAK.
Prins TJ.
Showalter RE.
Tatlock JH.
Tucker KD.
Villafranca JE.
J.
Med. Chem.
1996,
39:
1872
<A NAME="RZ14009SS-7C">7c </A>
Gillard J.
Abraham A.
Anderson PC.
Beaulieu PL.
Bogri T.
Bousquet Y.
Grenier L.
Guse Y.
Lavellée P.
J.
Org. Chem.
1996,
61:
2226
<A NAME="RZ14009SS-7D">7d </A>
Ho B.
Zabriskie TM.
Bioorg. Med. Chem.
Lett.
1998,
8:
739
<A NAME="RZ14009SS-7E">7e </A>
Skiles JW.
Giannousis PP.
Fales KR.
Bioorg. Med. Chem. Lett.
1996,
6:
963
<A NAME="RZ14009SS-8A">8a </A>
Ornstein PL.
Schoepp DD.
Arnold MB.
Leander JD.
Lodge D.
Paschal JW.
Elzey T.
J.
Med. Chem.
1991,
34:
90
<A NAME="RZ14009SS-8B">8b </A>
Hays SJ.
Malone TC.
Johnson G.
J. Org. Chem.
1991,
56:
4084
<A NAME="RZ14009SS-9A">9a </A>
Anderson PC,
Soucy F,
Yoakim C,
Lavallée P, and
Beaulieu PL. inventors; US 5,545.
<A NAME="RZ14009SS-9B">9b </A>
Lamarre D.
Croteau G.
Wardrop E.
Bourgon L.
Thibeault D.
Clouette C.
Vaillancourt M.
Cohen E.
Pargellis C.
Yoakim C.
Anderson PC.
Antimicrob.
Agents Chemother.
1997,
41:
965
<A NAME="RZ14009SS-10">10 </A>
Bellier B.
Da Nascimiento S.
Meudal H.
Gincel E.
Roques BP.
Garbay C.
Bioorg. Med. Chem. Lett.
1998,
8:
1419
For a recent review on the asymmetric
synthesis of pipecolic acids and derivatives see:
<A NAME="RZ14009SS-11A">11a </A>
Kadouri-Puchot C.
Comesse S.
Amino Acids
2005,
29:
101
<A NAME="RZ14009SS-11B">11b </A>
Cordero FM.
Bonollo S.
Machetti F.
Brandi A.
Eur. J. Org.
Chem.
2006,
3235
<A NAME="RZ14009SS-12A">12a </A>
Sun C.-S.
Lin Y.-S.
Hou D.-R.
J. Org. Chem.
2008,
73:
6877
<A NAME="RZ14009SS-12B">12b </A>
Lloyd RC.
Lloyd MC.
Smith MEB.
Holt KE.
Swift JP.
Keene PA.
Taylor SJC.
McCague R.
Tetrahedron
2004,
60:
717
<A NAME="RZ14009SS-12C">12c </A>
Marin J.
Didierjean C.
Aubry A.
Casimir J.-R.
Briand J.-P.
Guichard G.
J. Org. Chem.
2004,
69:
130
<A NAME="RZ14009SS-12D">12d </A>
Celestini P.
Danieli B.
Lesma G.
Sacchetti A.
Silvani A.
Passarella D.
Virdis A.
Org.
Lett.
2002,
4:
1367
<A NAME="RZ14009SS-12E">12e </A>
Greshock TJ.
Funk RL.
J.
Am. Chem. Soc.
2002,
124:
754
<A NAME="RZ14009SS-12F">12f </A>
Agami C.
Bisaro F.
Comesse S.
Guesné S.
Kadouri-Puchot C.
Morgentin R.
Eur. J. Org. Chem.
2001,
2385
<A NAME="RZ14009SS-12G">12g </A>
Sabat M.
Johnson CR.
Tetrahedron Lett.
2001,
42:
1209
<A NAME="RZ14009SS-12H">12h </A>
Davis FA.
Fang T.
Chao B.
Burns DM.
Synthesis
2000,
2106
<A NAME="RZ14009SS-12I">12i </A>
Brooks CA.
Comins DL.
Tetrahedron Lett.
2000,
41:
3551
<A NAME="RZ14009SS-12J">12j </A>
Haddad M.
Larchevêque M.
Tetrahedron: Asymmetry
1999,
10:
4231
<A NAME="RZ14009SS-12K">12k </A>
Di Nardo C.
Varela O.
J. Org. Chem.
1999,
64:
6119
<A NAME="RZ14009SS-12L">12l </A>
Golubev A.
Sewald N.
Burger K.
Tetrahedron
Lett.
1995,
36:
2037
<A NAME="RZ14009SS-13">13 </A>
Occhiato EG.
Scarpi D.
Guarna A.
Eur.
J. Org. Chem.
2008,
524
<A NAME="RZ14009SS-14A">14a </A>
Anelli PL.
Fedeli F.
Gazzotti O.
Lattuada L.
Lux G.
Rebasti F.
Bioconjugate
Chem.
1999,
10:
137
<A NAME="RZ14009SS-14B">14b </A>
Chen H.
Feng Y.
Xu Z.
Ye T.
Tetrahedron
2005,
61:
11132
<A NAME="RZ14009SS-15">15 </A>
Purification is not necessary, but
a much cleaner lactam is obtained if the protected nitrile is purified
by chromatography.
For a review see:
<A NAME="RZ14009SS-16A">16a </A>
Occhiato EG.
Mini-Rev. Org. Chem.
2004,
1:
149
Recent progresses in the use of heterocyclic-derived vinyl
phosphates:
<A NAME="RZ14009SS-16B">16b </A>
Claveau E.
Gillaizeau I.
Blu J.
Bruel A.
Coudert G.
J.
Org. Chem.
2007,
72:
4832 ; and
references therein
<A NAME="RZ14009SS-16C">16c </A>
Lo Galbo F.
Occhiato EG.
Guarna A.
Faggi C.
J. Org. Chem.
2003,
68:
6360
<A NAME="RZ14009SS-17">17 </A>
Cacchi S.
Morera E.
Ortar G.
Tetrahedron
Lett.
1985,
26:
1109
<A NAME="RZ14009SS-18">18 </A>
Elimination of ROH to give an α,β,γ,δ-unsaturated
ester has been sometime observed by us in the presence of acids,
even when compound 10 was stored in fridge
and traces of acids were present. The same elimination occurs with
phosphate 9 .
<A NAME="RZ14009SS-19">19 </A>
Kaisalo LH.
Hase TA.
Tetrahedron Lett.
2001,
42:
7699
<A NAME="RZ14009SS-20">20 </A>
Crabtree RH.
Davis MW.
J. Org. Chem.
1986,
51:
2655 ; The reaction was carried out in CH2 Cl2 under
H2 at 1 atm (no conversion after 24 h) and 50 atm. In
the latter case we observed a certain degree of conversion after
24 h (40%) but the facial selectivity was poor (ratio trans /cis ˜3:2)
<A NAME="RZ14009SS-21">21 </A>
Compounds trans -12a , trans -12b , and trans -12c
¹³ are
easily differentiated from the corresponding cis -compounds
by ¹ H NMR analysis. In trans -compounds,
the H2 is shifted downfield [trans -12a : δ = 5.02 and 4.86
(two rotamers); trans -12b : δ = 5.06
and 4.91 (two rotamers); trans -12c : δ = 4.98 and 4.83
(two rotamers)] and H6axial is upfield shifted (˜3.00
ppm in trans -12a ,b ,c ) compared
to the corresponding protons in the cis -isomers:
H2 resonates at cis -12a : δ = 4.80 and
4.64, cis -12b : δ = 4.77
and 4.62, cis -12c : δ = 4.78
and 4.63; H6axial resonates for cis -12a -c at
ca. δ = 3.45. The same applies to the corresponding
alcohols: in trans -compound 13 H2 resonates at δ = 5.04
and 4.90 (two rotamers) and H6axial at ca. δ = 3.0.
In the corresponding cis -isomer,¹³ H2 resonates
at δ = 4.85 and 4.70 (two rotamers) and H6axial is shifted
downfield to δ = 3.4.
<A NAME="RZ14009SS-22A">22a </A>
Herdeis C.
Engel W.
Arch.
Pharm. (Weinheim)
1993,
326:
297
<A NAME="RZ14009SS-22B">22b </A>
Herdeis C.
Engel W.
Arch. Pharm. (Weinheim)
1992,
325:
419
<A NAME="RZ14009SS-23">23 </A>
Compound 14 was
recovered only in traces after chromatography as it probably decomposed
in part. Compound 14 has a diagnostic downfield
shifted H4 proton to δ = 4.97, in accordance with
the value (δ = 4.90-5.00) reported for
the analogous N -tosyl and N -Cbz compounds (see ref. 22). 14 : ¹ H NMR (200 MHz,
CDCl3 ): δ = 4.97 (m, 1 H), 4.90-4.70
(br m, 1 H), 4.30-4.00 (br m, 1 H), 3.74 (s, 3 H), 3.35-3.15
(br m, 1 H), 2.55-2.40 (m, 1 H), 2.40-2.37 (m,
1 H), 2.14-2.05 (m, 1 H), 1.98-1.85 (m, 1 H).
Compound (2R ,4R )-13 , possessing trans -stereochemistry, is easily differentiated
by ¹ H NMR from its cis -isomer especially
as the axially oriented proton on C4 is now shielded from δ = 4.15
to 3.70. Moreover in the trans -compound
there is an NOE enhancement between H4 and H6axial . Enantiopure cis -isomer (2S ,4R )-13 has been
already prepared by us (see ref. 13) and, in its racemic form, by Hiemstra
and Speckamp. See:
<A NAME="RZ14009SS-24A">24a </A>
Esch PM.
de Boer RF.
Hiemstra H.
Boska IM.
Speckamp WN.
Tetrahedron
1991,
47:
4063
<A NAME="RZ14009SS-24B">24b </A>
Esch PM.
Boska IM.
Hiemstra H.
de Boer RF.
Speckamp WN.
Tetrahedron
1991,
47:
4039
<A NAME="RZ14009SS-25">25 </A>
Bartali L.
Scarpi D.
Guarna A.
Prandi C.
Occhiato EG.
Synlett
2009,
913
<A NAME="RZ14009SS-26A">26a </A>
Agami C.
Couty F.
Poursoulis M.
Vaissermann J.
Tetrahedron
1992,
48:
431
<A NAME="RZ14009SS-26B">26b </A>
Golubev AS.
Sewald N.
Burger K.
Tetrahedron
1996,
52:
14757