Synthesis 2009(20): 3375-3377  
DOI: 10.1055/s-0029-1216993
SHORTPAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of 2-Aryl-2,3,3,3-tetrafluoropropanoic Acids, Tetrafluorinated Fenoprofen and Ketoprofen by Electrochemical Carboxylation of Pentafluoroethylarenes

Yusuke Yamauchi, Kanae Sakai, Tsuyoshi Fukuhara, Shoji Hara, Hisanori Senboku*
Laboratory of Organic Reaction, Division of Chemical Process Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
Fax: +81(11)7066555; e-Mail: senboku@eng.hokudai.ac.jp;
Weitere Informationen

Publikationsverlauf

Received 14 May 2009
Publikationsdatum:
08. September 2009 (online)

Abstract

Synthesis of 2,3,3,3-tetrafluoro-2-(3-phenoxyphenyl)­-propanoic acid and 2-(3-benzoylphenyl)-2,3,3,3-tetrafluoropropanoic acid (tetrafluorinated fenoprofen and ketoprofen) was achieved by electrochemical carboxylation of pentafluoroethyl­arenes.

    References

  • Recent reviews:
  • 1a Sakakura T. Choi J.-C. Yasuda H. Chem. Rev.  2007,  107:  2365 
  • 1b Louie J. Curr. Org. Chem.  2005,  9:  605 
  • 1c Aresta M. Dibenedettob A. Dalton Trans.  2007,  2975 
  • 2a Silvestri G. Gambino S. Filardo G. Gulotta A. Angew. Chem., Int. Ed. Engl.  1984,  23:  979 
  • 2b Silvestri G. Gambino S. Filardo G. Acta Chem. Scand.  1991,  45:  987 
  • 3a Sock O. Troupel M. Périchon J. Tetrahedron Lett.  1985,  26:  1509 
  • 3b Chaussard J. Folest JC. Nédélec JY. Périchon J. Sibille S. Troupel M. Synthesis  1990,  369 
  • 4a Uneyama K. Organofluorine Chemistry   Blackwell; Oxford: 2006. 
  • 4b Welch JT. Tetrahedron  1987,  43:  3123 
  • 4c Hiyama T. Organofluorine Compounds   Yamamoto H. Springer-Verlag; Berlin: 2000. 
  • 5a Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications   Wiley-VCH; Weinheim: 2004. 
  • 5b Advances in Organic Synthesis   Vol. 2:  . Laali KK. Bentham Science; Hilversum: 2006. 
  • 6 Saboureau C. Troupel M. Sibille S. Périchon J. J. Chem. Soc., Chem. Commun.  1989,  1138 
  • 7 Chiozza E. Desigaud M. Greiner J. Dunach E. Tetrahedron Lett.  1998,  39:  4831 
  • 8 Yamauchi Y. Fukuhara T. Hara S. Senboku H. Synlett  2008,  438 
  • 9a Kamekawa H. Senboku H. Tokuda M. Electrochim. Acta  1997,  42:  2117 
  • 9b Tokuda M. Yoshikawa A. Suginome H. Senboku H. Synthesis  1997,  1143 
  • 9c Kamekawa H. Kudo H. Senboku H. Tokuda M. Chem. Lett.  1997,  917 
  • 9d Kamekawa H. Senboku H. Tokuda M. Tetrahedron Lett.  1998,  39:  1591 
  • 9e Senboku H. Fujimura Y. Kamekawa H. Tokuda M. Electrochim. Acta  2000,  45:  2995 
  • 9f Senboku H. Komatsu H. Fujimura Y. Tokuda M. Synlett  2001,  418 
  • 9g Senboku H. Kanaya H. Fujimura Y. Tokuda M. J. Electroanal. Chem.  2001,  507:  82 
  • 9h Senboku H. Kanaya H. Tokuda M. Synlett  2002,  140 
  • 9i Chowdhury MA. Senboku H. Tokuda M. Tetrahedron  2004,  60:  475 
  • 9j Kuang C. Yang Q. Senboku H. Tokuda M. Chem. Lett.  2005,  34:  528 
  • 9k Senboku H. Yamauchi Y. Fukuhara T. Hara S. Electrochemistry  2006,  74:  612 
  • 10 Uneyama K. Katagiri T. Amii H. Acc. Chem. Res.  2008,  41:  817 ; and references cited therein
  • 11a Singh RP. Shreeve JM. Chem. Commun.  2002,  1818 
  • 11b Arnold-Stanton R. Lemal DM. J. Org. Chem.  1991,  56:  151 
  • 11c Bénéfice-Malouet S. Blancou H. Itier J. Commeyras A. Synthesis  1991,  647 
  • 11d Fujita M. Hiyama T. Bull. Chem. Soc. Jpn.  1987,  60:  4377 
  • 11e Krespan CG. Van-Catledge FA. Smart BE. J. Am. Chem. Soc.  1984,  106:  5544 
  • 11f Ishikawa N. Takahashi M. Sato T. Kitazume T. J. Fluorine Chem.  1983,  22:  585 
  • 11g Calas P. Commeyras A. J. Electroanal. Chem.  1978,  89:  363 
  • 11h Blancou H. Moreau P. Commeyras A. J. Chem. Soc., Chem. Commun.  1976,  885 
  • 11i Hemer I. Havlíèek J. Dìdek V. J. Fluorine Chem.  1986,  34:  241 
  • 12a Örn U. Eriksson L. Jakobsson E. Bergman Å. Acta Chem. Scand.  1996,  50:  802 
  • 12b Mechelke MF. Wiemer DF. J. Org. Chem.  1999,  64:  4821 
  • 13 Carr GE. Chambers RD. Holmes TF. Parker DG. J. Chem. Soc., Perkin Trans. 1  1988,  921 
  • 16 Takeuchi Y. Fujisawa H. Fujiwara T. Matsuura M. Komatsu H. Ueno S. Matsuzaki T. Chem. Pharm. Bull.  2005,  53:  1062 
14

The yield of tetrafluorinated ibuprofen and loxoprofen by EC of the corresponding tetrafluoroethylarenes were 31% and 32%, respectively, as determined by ¹9F NMR spectroscopy.

15

The low yields in the synthesis of tetrafluorinated ibuprofen and loxoprofen are due to the elimination of a fluoride ion from the intermediate A producing the corresponding trifluorostyrenes, [¹0] [¹7] whose electrochemical reduction followed by the fixation of CO2 would likely lead to several carboxylic acids as by-products [9a,f] resulting in low yields of the expected products.

17

We independently prepared α,β,β-trifluoro-4-isobutyl­-styrene and confirmed its formation in the EC of 4-(penta­-fluoroethyl)isobutylbenzene by ¹9F NMR spectra of the crude products. We also tried the EC of α,β,β-trifluoro-4-isobutylstyrene under the same conditions as the EC of 4-(pentafluoroethyl)isobutylbenzene and found that ¹9F NMR spectra of the crude products closely resembled that of the EC of 4-(pentafluoroethyl)isobutylbenzene. These results indicated that similar products would be produced in both reactions and α,β,β-trifluoro-4-isobutylstyrene would be produced in the EC of 4-(pentafluoroethyl)isobutylbenzene. Because both reactions were complicated and several products were produced, isolation and identification of the products could not be carried out.