Subscribe to RSS
DOI: 10.1055/s-0029-1217060
Synthesis of Fluorescent 9-Aryl-Substituted Benzo[b]quinolizinium Derivatives
Publication History
Publication Date:
19 October 2009 (online)
Abstract
The arylation of readily available benzo[b]quinolizinium-9-boronic acid with carbocyclic or heterocyclic bromoarenes in the presence of a palladium catalyst [Pd(dppf)Cl2˙CH2Cl2 or Pd(PPh3)2Cl2] gives the corresponding cationic biaryl products in yields of 15-81%. All aryl-substituted benzo[b]quinolizinium (acridizinium) derivatives exhibit a long-wavelength absorption maximum between 409 and 422 nm in water, which change marginally in different solvents (Δλ <10 nm). As the only exception, the 9-(N,N-dimethylaminophenyl)benzo[b]quinolizinium exhibits pronounced solvatochromic behavior (H2O: λabs = 422 nm; MeCN: λabs = 474 nm; CH2Cl2: λabs = 507 nm) due to the strong donor-acceptor interplay in the cationic chromophore. Depending on the donor strength of the aryl substituent, the benzo[b]quinolizinium derivatives exhibit fluorescence bands in water with long-wavelength maxima between λfl = 452 nm (R = phenyl) and 529 nm (R = 4-methoxyphenyl). The non-fluorescent 9-(N,N-dimethylaminophenyl)benzo[b]quinolizinium may be employed as a pH-sensitive light-up probe (pH 2.8-4.8), since its emission intensity increases by a factor of 130 upon protonation.
Key words
arylations - biaryls - cationic hetarenes - heterocycles - fluorescent probes
-
1a
Functional Dyes
Kim S.-H. Elsevier; Amsterdam: 2006. -
1b
Zollinger H. Color Chemistry 3rd ed.: VCH; Weinheim: 2003. -
1c
Lakowicz R. Principles of Fluorescence Spectroscopy 3rd ed.: Plenum Publishing; New York: 2006. -
2a
Martinez V.Burgos C.Alvarez-Builla J.Fernandez G.Domingo A.Garcia-Nieto R.Gago F.Manzanares I.Cuevas C.Vaquero JJ. J. Med. Chem. 2004, 47: 1136 -
2b
Molina A.Vaquero JJ.García-Navío JL.Alvarez-Builla J.Pascual-Teresa B.Gago F.Rodrigo MM. J. Org. Chem. 1999, 64: 3907 -
2c
Fontana A.Benito EJ.Martín JM.Sánchez N.Alajarin R.Vaquero JJ.Alvarez-Builla J.Lambel-Giraudet SL.Pierre A.Caignard D. Bioorg. Med. Chem. Lett. 2002, 12: 2611 -
2d
Ihmels H.Faulhaber K.Vedaldi D.Dall’Acqua F.Viola G. Photochem. Photobiol. 2005, 81: 1107 -
2e
Granzhan A.Ihmels H.Viola G. J. Am. Chem. Soc. 2007, 129: 1254 -
3a
Vaquero JJ.Alvarez-Builla J. Advances in Nitrogen Heterocycles Vol. 4:Moody CJ. JAI Press; Stamford CT: 2000. -
3b
Bradsher CK. In Comprehensive Heterocyclic Chemistry Vol. 2:Boultier AJ.McKillop A. Pergamon Press; Oxford: 1985. p.525 -
4a
Granzhan A.Ihmels H. ARKIVOC 2007, (viii): 136 -
4b
van den Berg O.Jager WF.Picken SJ. J. Org. Chem. 2006, 71: 2666 -
4c
Naruto S.Mizuta H.Nishimura H. Tetrahedron Lett. 1976, 17: 1597 -
5a
Deiseroth HJ.Granzhan A.Ihmels H.Schlosser M.Tian M. Org. Lett. 2008, 10: 757 -
5b
Krapcho AP.Cadamuro SA.Macnee L. ARKIVOC 2007, (ix): 28 -
5c
Mörler D.Kröhnke F. Liebigs Ann. Chem. 1971, 744: 65 -
5d
Arai S.Hida M. Advances in Heterocyclic ChemistryKatritzky AR. Academic Press; Orlando: 1992. -
5e
Miyadera T.Tachikawa R. Tetrahedron 1969, 25: 837 -
6a
Barchín BM.Valenciano J.Cuadro AM.Alvarez-Builla J.Vaquero JJ. Org. Lett. 1999, 1: 545 -
6b
García-Cuadrado D.Cuadro AM.Barchín BM.Nuñez A.Cañeque T.Alvarez-Builla J.Vaquero JJ. J. Org. Chem. 2006, 71: 7989 -
6c
García D.Cuadro AM.Alvarez-Builla J.Vaquero JJ. Org. Lett. 2004, 6: 4175 - 7
García-Cuadrado D.Cuadro AM.Alvarez-Builla J.Vaquero JJ. Synlett 2002, 1904 - 8
Caneque T.Cuadro AM.Alvarez-Builla J.Vaquero JJ. Tetrahedron Lett. 2009, 50: 1419 -
9a
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 -
9b
Miyaura N. Top. Curr. Chem. 2002, 219: 11 -
9c
Suzuki A. Chem. Commun. 2005, 4759 -
9d
Miyaura N. In Metal-Catalyzed Cross-Coupling ReactionsDiederich F.de Meijere A. Wiley-VCH; New York: 2004. Chap. 2. -
9e
Martin R.Buchwald SL. Acc. Chem. Res. 2008, 41: 1461 -
10a
Nicolas M.Fabre B.Marchand G.Simonet J. Eur. J. Org. Chem. 2000, 1703 -
10b
Zhang C.Zheng G.Fang L.Li Y. Synlett 2006, 475 - 11
Wright SW.Hageman DL.McClure LD. J. Org. Chem. 1994, 59: 6095 - 12
Kudo N.Perseghini M.Fu GC. Angew. Chem. Int. Ed. 2006, 45: 1282 - 13
Molander GA.Petrillo DE. Org. Lett. 2008, 10: 1795 - 14
Molander GA.Canturk B.Kennedy LE. J. Org. Chem. 2009, 74: 973 - 15
Saraf SUD. Heterocycles 1981, 16: 987 - A similar effect has been observed in other chromophores, see:
-
16a
Choi SH.Kim K.Lee J.Do Y.Churchill DG. J. Chem. Crystallogr. 2007, 37: 315 -
16b
Baraldi I.Ginocchietti G.Mazzucato U.Spalletti A. Chem. Phys. 2007, 337: 168 - 17 A similar effect was observed for
9-[(4-dimethyl-amino)phenyl]-10-methylacridinium
perchlorate, see:
Ariese F.Verhoeven JW. Recl. Trav. Chim. Pays-Bas 1989, 108: 109 - 18
Laage D.Thompson WH.Blanchard-Desce M.Hynes JT. J. Phys. Chem. A 2003, 107: 6032 -
19a
de Silva AP.Gunaratne HQN.Gunnalaugsson T.Huxley AJM.McCoy CP.Rademacher JT.Rice TE. Chem. Rev. 1997, 97: 1515 -
19b
Valeur B. Molecular Fluorescence: Principles and Applications Wiley-VCH; Weinheim: 2002. - 20
Polster J.Lachmann H. Spectrometric Titrations: Analysis of Chemical Equilibria VCH; Weinheim: 1989. - 21
Jonker SA.Vandijk SI.G oubitz K.Reiss CA.Schuddeboom W.Verhoeven JW. Mol. Cryst. Liq. Cryst. 1990, 183: 273 - For other water-soluble pH probes, see for example:
-
22a
Evangelio E.Hernando J.Imaz I.Bardaj GG.Alibos R.Busquo F.Ruiz-Molina D. Chem. Eur. J. 2008, 14: 9754 -
22b
Bergen A.Granzhan A.Ihmels H. Photochem. Photobiol. Sci. 2008, 7: 405 -
22c
de Silva AP.de Silva SSK.Goonesekera NCW.Gunaratne HQN.Lynch PLM.Nesbitt KR.Patuwathavithana ST.Ramyalal NLDS. J. Am. Chem. Soc. 2007, 129: 3050 -
22d
Ikeda S.Okamoto A. Photochem. Photobiol. Sci. 2007, 6: 1197 -
22e
Yuasa H.Fujii N.Yamazaki S. Org. Biomol. Chem. 2007, 5: 2920 -
22f
Sun KM.McLaughlin CK.Lantero DR.Manderville RA. J. Am. Chem. Soc. 2007, 129: 1894 -
22g
Tang B.Liu X.Xu K.Huang H.Yang G.An L. Chem. Commun. 2007, 3726 -
22h
Hilderbrand SA.Weissleder R. Chem. Commun. 2007, 2747 - 23
Bradsher CK.Sherer JP.Parham JH. J. Chem. Eng. Data 1965, 10: 180 - 24
Harris RK.Becker ED.Cabral de Menezes S.Goodfellow R.Granger P. Pure Appl. Chem. 2001, 73: 1795 - 25
Britton HTS.Robinson RA. J. Chem. Soc. 1931, 458