Synthesis 2010(3): 520-523  
DOI: 10.1055/s-0029-1217120
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

One-Pot Condensation-Oxidation of Glyoxamide with 1,2-Diamines Providing Imidazolines and Benzimidazoles

Kenichi Murai, Nobuhiro Takaichi, Yusuke Takahara, Shunsuke Fukushima, Hiromichi Fujioka*
Graduate School of Pharmaceutical Science, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
Fax: +81(66)8798229; e-Mail: fujioka@phs.osaka-u.ac.jp;
Further Information

Publication History

Received 7 September 2009
Publication Date:
13 November 2009 (online)

Abstract

A novel method for the preparation of imidazolines and benzimidazoles bearing an amide at the 2-position, is described. The reactions of the glyoxamide with aliphatic and aromatic 1,2-diamines were found to form five-membered imidazolines and benzimidazoles by a one-pot condensation-oxidation procedure.

    References

  • For recent examples, see:
  • 1a Curini M. Epifano F. Montanari F. Rosati O. Taccone S. Synlett  2004,  1832 
  • 1b Lin S. Yang L. Tetrahedron Lett.  2005,  46:  4315 
  • 1c Das B. Holla H. Srinivas Y. Tetrahedron Lett.  2007,  48:  61 
  • 1d Bahrami K. Khodaei MM. Naali F. J. Org. Chem.  2008,  73:  6835 ; and references therein
  • 2a Fujioka H. Murai K. Ohba Y. Hiramatsu A. Kita Y. Tetrahedron Lett.  2005,  46:  2197 
  • 2b Fujioka H. Murai K. Kubo O. Ohba Y. Kita Y. Tetrahedron  2007,  63:  638 
  • 2c Gogoi P. Konwar D. Tetrahedron Lett.  2006,  47:  79 
  • 2d Ishihara M. Togo H. Synlett  2006,  227 
  • 2e Sayama S. Synlett  2006,  1479 
  • For recent reviews, see:
  • 3a Crouch RD. Tetrahedron  2009,  65:  2387 
  • 3b Liu H. Du D.-M. Adv. Synth. Catal.  2009,  351:  489 
  • 4 Murai K. Morishita M. Nakatani R. Kubo O. Fujioka H. Kita Y. J. Org. Chem.  2007,  72:  8947 
  • For examples, see:
  • 5a Nakahara T. Okamoto N. Suzuki K. Kanie O. Carbohydr. Res.  2008,  343:  1624 
  • 5b Nakamura S. Hyodo K. Nakamura Y. Shibata N. Toru T. Adv. Synth. Catal.  2008,  350:  1443 
  • For examples, see:
  • 6a Valdez-Padilla D. Rodoríguez-Morales S. Hernández-Campos A. Hernández-Luis F. Yépez-Mulia L. Tapia-Contreras A. Castillo R. Bioorg. Med. Chem.  2009,  17:  1724 
  • 6b Guo Q. Chandrasekhar J. Ihle D. Wustrow DJ. Chenard BL. Krause JE. Hutchison A. Alderman D. Cheng C. Cortight D. Broom D. Kershaw MT. Simmermacher-Mayer J. Peng Y. Hodgetts KJ. Bioorg. Med. Chem. Lett.  2008,  18:  5027 
  • 6c Borza I. Kolok S. Gere A. Nagy J. Fodor L. Galgóczy K. Fetter J. Bertha F. Ágai B. Horváth C. Farkas S. Domány G. Bioorg. Med. Chem. Lett.  2006,  16:  4638 
  • 6d Venable JD. Cai H. Chai W. Dvorak CA. Grice CA. Jablonowski JA. Shah CR. Kwok AK. Ly KS. Pio B. Wei J. Desai PJ. Jiang W. Nguyen S. Ling P. Wilson SJ. Dunford PJ. Thurmond RL. Lovenberg TW. Karlsson L. Carruthers NI. Edwards JP. J. Med. Chem.  2005,  48:  8289 
  • 6e Terzioglu N. van Rijn RM. Bakker RA. De Esch IJP. Leurs R. Bioorg. Med. Chem. Lett.  2004,  14:  5251 
  • 6f Orjales A. Alonso-Cires L. López-Tudanca P. Tapia I. Mosquera R. Labeaga L. Eur. J. Med. Chem.  1999,  34:  415 
  • 7a Zychlinski AV. Ugi I. Heterocycles  1998,  49:  29 
  • 7b Hulme C. Cherrier M.-P. Tetrahedron Lett.  1999,  40:  5295 
  • 8a Wolf FJ. Pfister K. Beutel RH. Wilson RM. Robinson CA. Stevens JR. J. Am. Chem. Soc.  1949,  71:  6 
  • 8b Kazimierczuk Z. Pfleiderer W. Liebigs Ann. Chem.  1982,  754 
  • 8c Lumma WC. Hartman RD. Saari WS. Engelhardt EL. Lotti VJ. Stone CA. J. Med. Chem.  1981,  24:  93 
  • 8d Chen P. Barrish JC. Iwanowicz E. Lin J. Bednarz MS. Chen B.-C. Tetrahedron Lett.  2001,  42:  4293 
  • 8e He W. Myers MR. Hanney B. Spada AP. Bilder G. Galzcinski H. Amin D. Needle S. Page K. Jayyosi Z. Perrone M. Bioorg. Med. Chem. Lett.  2003,  13:  3097 
  • 8f Doherty EM. Fotsch C. Bannon AW. Bo Y. Chen N. Dominguez C. Falsey J. G avva NR. Katon J. Nixey T. Ognyanov VI. Pettus L. Rzasa RM. Stec M. Surapaneni S. Tamir R. Zhu J. Treanor JJS. Norman MH. J. Med. Chem.  2007,  50:  3515 
  • 9a Ohta A. Watanabe T. Akita Y. Yoshida M. Toda S. Akamatsu T. Ohno H. Suzuki A. J. Heterocycl. Chem.  1982,  19:  1061 
  • 9b Raw SA. Wilfred CD. Taylor RJK. Org. Biomol. Chem.  2004,  2:  788 
  • 10a Raw SA. Wilfred CD. Taylor RJK. Chem. Commun.  2003,  2286 
  • 10b Darkins P. Groarke M. McKervey MA. Moncrieff HM. McCarthy N. Nieuwenhuyzen M. J. Chem. Soc., Perkin Trans. 1  2000,  381 
  • Substituents on the nitrogen are also important; less nucleophilic nitrogens tends to lead to the formation of five-membered rings, see:
  • 11a Schönberg A. Singer E. Eckert P. Chem. Ber.  1980,  113:  2823 
  • 11b Asami M. Inoue S. Chem. Lett.  1991,  685 
  • 11c O’Brien P. Warren S. Tetrahedron Lett.  1995,  36:  2681 
  • 11d Pikul S. McDow Dunham KL. Almstead NG. De B. Natchus MG. Anastasio MV. McPhail SJ. Snider CE. Taiwo YO. Rydel T. Dunaway CM. Gu F. Mieling GE. J. Med. Chem.  1998,  41:  3568 
  • 12 Condensation of glyoxalic acid with 1,2-diamines are known to form five-membered 2-carboxy imidazolidines, see: Halland N. Hazell RG. Jørgensen KA. J. Org. Chem.  2002,  67:  8331 
  • 13 For oxidative decarboxylation of 2-carboxy imidazolidines by NBS to give 2H-imidazolines, see: Murai K. Morishita M. Nakatani R. Fujioka H. Kita Y. Chem. Commun.  2008,  4498 
  • 16 Chakrabarty M. Mukherji A. Mukherjee R. Arima S. Harigaya Y. Tetrahedron Lett.  2007,  48:  5239 
  • 17a Petyuniun PA. Choudry AM. Khim. Geterotsikl. Soedin.  1982,  5:  684 
  • 17b Yorovenko VN. Kosarev SA. Zavarzin IV. Krayushkin MM. Russ. Chem. Bull.  1999,  48:  749 
  • 17c Sharma P. Kumar A. Mandloi A. Synth. Commun.  2003,  33:  373 
  • 18a Stetter H. Skobel H. Chem. Ber.  1987,  120:  643 
  • 18b Ping X. Lin W. Zou X. Synthesis  2002,  1017 
14

Using two equivalents of NBS afforded complex mixtures.

15

Other reagents, such as NCS, NIS, NaClO2, oxone, TBHP, MCPBA, H2O2, CAN, and TsOH afforded poor results.