RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2009(24): 4208-4218
DOI: 10.1055/s-0029-1217140
DOI: 10.1055/s-0029-1217140
PAPER
© Georg Thieme Verlag
Stuttgart ˙ New York
Asymmetric Synthesis of All Stereoisomers of α-Methylthreonine Using an Organocatalytic Steglich Rearrangement Reaction as a Key Step
Weitere Informationen
Received
28 April 2009
Publikationsdatum:
20. November 2009 (online)
Publikationsverlauf
Publikationsdatum:
20. November 2009 (online)
Abstract
An efficient synthetic route to all four stereoisomers of α-methylthreonine has been established. Each type of stereoisomer has been isolated in diastereomerically pure form and with an enantiomeric excess of at least 86% ee. The key step in this multi-step synthesis is an enantioselective organocatalytic Steglich rearrangement reaction of O-acetylated azlactones. The Steglich rearrangement was also extended to other substrates.
Key words
acylation - amino acids - asymmetric catalysis - rearrangements - stereoselective synthesis
-
1a
Williams DH. Acc. Chem. Res. 1984, 17: 364 -
1b
Harris CM.Kopecka H.Harris TM. J. Am. Chem. Soc. 1983, 105: 6915 -
1c
Chênevert R.Thiboutot S. Synthesis 1989, 444 -
2a
Jung ME.Jung YH. Tetrahedron Lett. 1989, 30: 6637 -
2b
Blaskovich MA.Evindar G.Rose NGW.Wilkinson S.Luo Y.Lajoe GA. J. Org. Chem. 1998, 63: 3631 -
2c
Coppola GM.Schuster HF. Asymmetric Synthesis. Construction of Chiral Molecules Using Amino Acids John Wiley & Sons; Toronto: 1987. -
2d
Fesko K.Giger L.Hilvert D. Bioorg. Med. Chem. Lett. 2008, 18: 5987 -
2e
Patel J.Clavé G.Renard P.-Y.Franck X. Angew. Chem. Int. Ed. 2008, 47: 4224 -
2f
Steinreiber J.Fesko K.Mayer C.Reisinger C.Schürmann M.Griengl H. Tetrahedron 2007, 63: 8088 -
3a
Cabrera S.Reyes E.Alemán J.Milelli A.Kobbelgaard S.Jørgensen KA. J. Am. Chem. Soc. 2008, 130: 12031 -
3b
Maruoka K.Ooi T.Kano T. Chem. Commun. 2007, 1487 -
3c
Cativiela C.Diaz-de-Villegas MD. Tetrahedron: Asymmetry 1998, 9: 3517 -
3d
Huang Z.He Y.-B.Raynor K.Tallent M.Reisine T.Goodman M. J. Am. Chem. Soc. 1992, 114: 9390 -
3e
He Y.-B.Huang Z.Raynor K.Reisine T.Goodman M. J. Am. Chem. Soc. 1993, 115: 8066 -
3f
Chalmers DK.Marshall GR. J. Am. Chem. Soc. 1995, 117: 5927 -
4a
Schöllkopf U.Hartwig W.Groth U. Angew. Chem., Int. Ed. Engl. 1980, 19: 212 ; Angew. Chem. 1980, 92, 205 -
4b
Ito Y.Sawamura M.Shirakawa E.Hayashizaki K.Hayashi T. Tetrahedron 1988, 44: 5253 -
4c
Blank S.Seebach D. Liebigs Ann. Chem. 1993, 889 -
4d
Moon S.-H.Ohfune Y. J. Am. Chem. Soc. 1994, 116: 7405 -
4e
Shao H.Rueter JK.Goodman M. J. Org. Chem. 1998, 63: 5240 -
4f
Kurodu S,Nozaki H,Watanabe K,Yokozeki K, andImabayashi Y. inventors; PCT Int. Pat. Appl. WO2006123745. -
4g
Avenoza A.Busto JH.Corzana F.Peregrina JM.Sucunza D.Zurbano MM. Tetrahedron: Asymmetry 2004, 15: 719 -
4h
Watts J.Benn A.Flinn N.Monk T.Ramjee M.Ray P.Wang Y.Quibell M. Bioorg. Med. Chem. 2004, 12: 2903 -
4i
Wei L.Steiner JP.Hamilton GS.Wu Y.-Q. Bioorg. Med. Chem. Lett. 2004, 14: 4549 - 5 For a preliminary communication of
initial results of this work, see:
Dietz FR.Gröger H. Synlett 2008, 663 -
6a For
a review of planar chiral DMAP derivatives in asymmetric catalysis,
see:
Fu GC. Acc. Chem. Res. 2004, 37: 542 -
6b
Ruble JC.Fu GC. J. Am. Chem. Soc. 1998, 120: 11532 -
6c
Ruble JC.Fu GC. J. Org. Chem. 1996, 61: 7230 -
6d Enantioselective Steglich
rearrangement of the acetyl group in 6 was also studied within the
Fu group, see:
Ruble JC. Ph.D. Thesis Massachusetts Institute of Technology; USA: 1999. - 7
Birman VB.Li X. Org. Lett. 2006, 8: 1351 -
8a
Bommarius AS.Schwarm M.Stingl K.Kottenhahn M.Huthmacher K.Drauz K. Tetrahedron: Asymmetry 1995, 6: 2851 -
8b
Josephson NS.Kuntz KW.Snapper M.Hoveyda AH. J. Am. Chem. Soc. 2001, 123: 11594 -
8c
Ettmayer P.Hubner M.Billich A.Rosenwirth B.Gstach H. Bioorg. Med. Chem. Lett. 1994, 4: 2851 -
8d
Evans DA.Miller SJ.Lectka T. J. Am. Chem. Soc. 1993, 115: 6460 -
8e
Vachal P.Jacobsen EN. J. Am. Chem. Soc. 2002, 124: 10012 -
8f
Martin NJA.Ozores L.List B. J. Am. Chem. Soc. 2007, 127: 8976 -
9a
Davies JS.Thomas WA. J. Chem. Soc., Perkin Trans. 2 1978, 1157 -
9b
Liang J.Ruble JG.Fu GC. J. Org. Chem. 1998, 63: 3154 - 10
Shaw SA.Aleman P.Christy J.Kampf JW.Va P.Vedejis E. J. Am. Chem. Soc. 2006, 128: 925 - 12 Review on asymmetric borane reduction,
see:
Corey EJ.Helal CJ. Angew. Chem. Int. Ed. 1998, 37: 1986 ; Angew. Chem. 1998, 110, 2092 - 13
Umino N.Iwakuma T.Itoh N. Chem. Pharm. Bull. 1979, 27: 1479 -
14a
Yamada K.Takeda M.Iwakuma T. J. Chem. Soc., Perkin Trans. 1 1983, 265 -
14b
Reiners I.Gröger H.Martens J. J. Prakt. Chem. 1997, 339: 541 - 15
Makino K.Okamoto N.Hara O.Hamada Y. Tetrahedron: Asymmetry 2001, 12: 1757 - 16
Steglich W.Höfle G. Chem. Ber. 1969, 102: 883 - The required azlactones were synthesized via N-benzoylation of the corresponding amino acid and subsequent ring-closure reaction according to literature protocols, and spectroscopic data of the required azlactones are reported in ref. 9b.
-
17a
For the N-benzoylation of amino acids, see ref. 9a.
-
17b For the ring-closure reaction:
Chen FMF.Kuroda K.Benoiton NL. Synthesis 1979, 230
References
Aldrich Technical Bulletin, AL-218, 2004.