Synthesis 2009(24): 4208-4218  
DOI: 10.1055/s-0029-1217140
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Asymmetric Synthesis of All Stereoisomers of α-Methylthreonine Using an Organocatalytic Steglich Rearrangement Reaction as a Key Step

Friedrich R. Dietz, Harald Gröger*
Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Henkestr. 42, 91054 Erlangen, Germany
Fax: +49(9131)8521165; e-Mail: harald.groeger@chemie.uni-erlangen.de;
Weitere Informationen

Publikationsverlauf

Received 28 April 2009
Publikationsdatum:
20. November 2009 (online)

Abstract

An efficient synthetic route to all four stereoisomers of α-methylthreonine has been established. Each type of stereoisomer has been isolated in diastereomerically pure form and with an enantiomeric excess of at least 86% ee. The key step in this multi-step synthesis is an enantioselective organocatalytic Steglich rearrangement reaction of O-acetylated azlactones. The Steglich rearrangement was also extended to other substrates.

    References

  • 1a Williams DH. Acc. Chem. Res.  1984,  17:  364 
  • 1b Harris CM. Kopecka H. Harris TM. J. Am. Chem. Soc.  1983,  105:  6915 
  • 1c Chênevert R. Thiboutot S. Synthesis  1989,  444 
  • 2a Jung ME. Jung YH. Tetrahedron Lett.  1989,  30:  6637 
  • 2b Blaskovich MA. Evindar G. Rose NGW. Wilkinson S. Luo Y. Lajoe GA. J. Org. Chem.  1998,  63:  3631 
  • 2c Coppola GM. Schuster HF. Asymmetric Synthesis. Construction of Chiral Molecules Using Amino Acids   John Wiley & Sons; Toronto: 1987. 
  • 2d Fesko K. Giger L. Hilvert D. Bioorg. Med. Chem. Lett.  2008,  18:  5987 
  • 2e Patel J. Clavé G. Renard P.-Y. Franck X. Angew. Chem. Int. Ed.  2008,  47:  4224 
  • 2f Steinreiber J. Fesko K. Mayer C. Reisinger C. Schürmann M. Griengl H. Tetrahedron  2007,  63:  8088 
  • 3a Cabrera S. Reyes E. Alemán J. Milelli A. Kobbelgaard S. Jørgensen KA. J. Am. Chem. Soc.  2008,  130:  12031 
  • 3b Maruoka K. Ooi T. Kano T. Chem. Commun.  2007,  1487 
  • 3c Cativiela C. Diaz-de-Villegas MD. Tetrahedron: Asymmetry  1998,  9:  3517 
  • 3d Huang Z. He Y.-B. Raynor K. Tallent M. Reisine T. Goodman M. J. Am. Chem. Soc.  1992,  114:  9390 
  • 3e He Y.-B. Huang Z. Raynor K. Reisine T. Goodman M. J. Am. Chem. Soc.  1993,  115:  8066 
  • 3f Chalmers DK. Marshall GR. J. Am. Chem. Soc.  1995,  117:  5927 
  • 4a Schöllkopf U. Hartwig W. Groth U. Angew. Chem., Int. Ed. Engl.  1980,  19:  212 ; Angew. Chem. 1980, 92, 205
  • 4b Ito Y. Sawamura M. Shirakawa E. Hayashizaki K. Hayashi T. Tetrahedron  1988,  44:  5253 
  • 4c Blank S. Seebach D. Liebigs Ann. Chem.  1993,  889 
  • 4d Moon S.-H. Ohfune Y. J. Am. Chem. Soc.  1994,  116:  7405 
  • 4e Shao H. Rueter JK. Goodman M. J. Org. Chem.  1998,  63:  5240 
  • 4f Kurodu S, Nozaki H, Watanabe K, Yokozeki K, and Imabayashi Y. inventors; PCT Int. Pat. Appl.  WO2006123745. 
  • 4g Avenoza A. Busto JH. Corzana F. Peregrina JM. Sucunza D. Zurbano MM. Tetrahedron: Asymmetry  2004,  15:  719 
  • 4h Watts J. Benn A. Flinn N. Monk T. Ramjee M. Ray P. Wang Y. Quibell M. Bioorg. Med. Chem.  2004,  12:  2903 
  • 4i Wei L. Steiner JP. Hamilton GS. Wu Y.-Q. Bioorg. Med. Chem. Lett.  2004,  14:  4549 
  • 5 For a preliminary communication of initial results of this work, see: Dietz FR. Gröger H. Synlett  2008,  663 
  • 6a For a review of planar chiral DMAP derivatives in asymmetric catalysis, see: Fu GC. Acc. Chem. Res.  2004,  37:  542 
  • 6b Ruble JC. Fu GC. J. Am. Chem. Soc.  1998,  120:  11532 
  • 6c Ruble JC. Fu GC. J. Org. Chem.  1996,  61:  7230 
  • 6d Enantioselective Steglich rearrangement of the acetyl group in 6 was also studied within the Fu group, see: Ruble JC. Ph.D. Thesis   Massachusetts Institute of Technology; USA: 1999. 
  • 7 Birman VB. Li X. Org. Lett.  2006,  8:  1351 
  • 8a Bommarius AS. Schwarm M. Stingl K. Kottenhahn M. Huthmacher K. Drauz K. Tetrahedron: Asymmetry  1995,  6:  2851 
  • 8b Josephson NS. Kuntz KW. Snapper M. Hoveyda AH. J. Am. Chem. Soc.  2001,  123:  11594 
  • 8c Ettmayer P. Hubner M. Billich A. Rosenwirth B. Gstach H. Bioorg. Med. Chem. Lett.  1994,  4:  2851 
  • 8d Evans DA. Miller SJ. Lectka T. J. Am. Chem. Soc.  1993,  115:  6460 
  • 8e Vachal P. Jacobsen EN. J. Am. Chem. Soc.  2002,  124:  10012 
  • 8f Martin NJA. Ozores L. List B. J. Am. Chem. Soc.  2007,  127:  8976 
  • 9a Davies JS. Thomas WA. J. Chem. Soc., Perkin Trans. 2  1978,  1157 
  • 9b Liang J. Ruble JG. Fu GC. J. Org. Chem.  1998,  63:  3154 
  • 10 Shaw SA. Aleman P. Christy J. Kampf JW. Va P. Vedejis E. J. Am. Chem. Soc.  2006,  128:  925 
  • 12 Review on asymmetric borane reduction, see: Corey EJ. Helal CJ. Angew. Chem. Int. Ed.  1998,  37:  1986 ; Angew. Chem. 1998, 110, 2092
  • 13 Umino N. Iwakuma T. Itoh N. Chem. Pharm. Bull.  1979,  27:  1479 
  • 14a Yamada K. Takeda M. Iwakuma T. J. Chem. Soc., Perkin Trans. 1  1983,  265 
  • 14b Reiners I. Gröger H. Martens J. J. Prakt. Chem.  1997,  339:  541 
  • 15 Makino K. Okamoto N. Hara O. Hamada Y. Tetrahedron: Asymmetry  2001,  12:  1757 
  • 16 Steglich W. Höfle G. Chem. Ber.  1969,  102:  883 
  • The required azlactones were synthesized via N-benzoylation of the corresponding amino acid and subsequent ring-closure reaction according to literature protocols, and spectroscopic data of the required azlactones are reported in ref. 9b.
  • 17a

    For the N-benzoylation of amino acids, see ref. 9a.

  • 17b For the ring-closure reaction: Chen FMF. Kuroda K. Benoiton NL. Synthesis  1979,  230 
11

Aldrich Technical Bulletin, AL-218, 2004.