Subscribe to RSS
DOI: 10.1055/s-0029-1217182
An Efficient and Convenient Protocol for Highly Regioselective Cleavage of Terminal Epoxides to β-Halohydrins
Publication History
Publication Date:
13 May 2009 (online)
Abstract
An efficient and facile strategy for the cleavage of terminal epoxides to β-halohydrins using active magnesium halides is described. The conversion proceeds smoothly at room temperature with high regioselectivity and good yields even when sensitive functional groups are present.
Key words
epoxide - β-halohydrin - cleavage - regioselectivity - chemoselectivity
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Piva O. Tetrahedron Lett. 1992, 33: 2459 -
1b
Berkessel A.Rollmann C.Chamouleau F.Labs S.May O.Gröger H. Adv. Synth. Catal. 2007, 349: 2697 -
1c
de Jong RM.Tiesinga JJW.Villa A.Tang L.Janssen DB.Dijkstra BW. J. Am.Chem. Soc. 2005, 127: 13338 - For reviews, see:
-
2a
Moore RE. In Marine Natural Products Vol. 1:Scheuer PJ. Academic; New York: 1978. Chap. 2. -
2b
Fenical W. In Marine Natural Products Vol. 2:Scheuer PJ. Academic; New York: 1980. p.174 -
2c
Barrow KD. In Marine Natural Products Vol. 5:Scheuer PJ. Academic; New York: 1983. p.51 -
3a
Righi G.Franchini T.Bonini C. Tetrahedron Lett. 1998, 39: 2385 -
3b
Babudri F.Fiandanese V.Marchese G.Punzi A. Tetrahedron 2001, 57: 549 -
3c
Boukhris S.Souizi A. Tetrahedron Lett. 2003, 44: 3259 -
4a
Sharghi H.Eskandari MM. Tetrahedron 2003, 59: 8509 -
4b
Konnaklieva ML.Dahi ML.Turos E. Tetrahedron Lett. 1992, 33: 7093 -
4c
Stewart CA.Vander Werf CA. J. Am. Chem. Soc. 1954, 76: 1259 -
4d
Kotsuki H.Shimanouchi T. Tetrahedron Lett. 1996, 37: 1845 -
4e
Sabitha G.Babu RS.Rajkumar M.Reddy CS.Yadav JS. Tetrahedron Lett. 2001, 42: 3955 -
4f
Pinto RMA.Salvador JAR.Roux CL. Tetrahedron 2007, 63: 9221 -
4g
Das B.Krishnaiah M.Venkateswarlu K. Tetrahedron Lett. 2006, 47: 4457 -
5a
Wu J.Sun X.Sun W.Ye S. Synlett 2006, 2489 -
5b
Niknam K.Nasehi T. Tetrahedron 2002, 58: 10259 - 6
Bajwa JS.Anderson RC. Tetrahedron Lett. 1991, 32: 3021 -
7a
Ranu BC.Banerjee S. J. Org. Chem. 2005, 70: 4517 -
7b
Ranu BC.Adak L.Banerjee S. Can. J. Chem. 2007, 85: 366 - 10
Eisch JJ.Liu ZR.Zheng GX. J. Org. Chem. 1992, 57: 5140
References and Notes
General Procedure
To
the solution of epoxide (5 mmol) in CH2Cl2 (8
mL) was added active MgX2˙THF (2.0 equiv, M = 1.78
mol/L) at r.t. The reaction was stirred at the same temperature
for 1 min and then quenched with sat. aq NH4Cl. The solvent
was removed under vacuum. and the residue was extracted with EtOAc.
The combined organic layer was washed with H2O and brine,
dried over anhyd Na2SO4, and concentrated
under reduced pressure. Purification of the residue was by chromatography
on SiO2 to give the product.
Spectral Data of
Compounds 1a-c, 2a,b, 3c, 7a, 7a′, 7b, 7b′ matched
in all respects with reported data.
Analytical
Data of Compounds 3-6
Compound 3a: ¹H NMR (400 MHz,
CDCl3): δ = 3.78
(m, 1 H), 3.53 (dd, J = 12.0,
4.0 Hz, 1 H), 3.43-3.36 (m, 3 H), 2.39 (br, 1 H), 1.92-1.82
(m, 2 H), 1.62-1.51 (m, 4 H). ¹³C
NMR (100 MHz, CDCl3): δ = 70.8,
40.3, 34.1, 33.6, 32.4, 24.3. IR (neat): 3393, 2941, 2864, 1432,
1259, 1050, 666, 561 cm-¹. HRMS (EI): m/z [M - H]+ calcd
for C6H12Br2O: 258.9234; found:
258.9156.
Compound 3b: ¹H
NMR (400 MHz, CDCl3): δ = 3.56-3.48 (m,
1 H), 3.42-3.35 (m, 3 H), 3.22 (t, J = 8.0
Hz, 1 H), 2.34 (br, 1 H), 1.90-1.84 (m, 2 H), 1.60-1.48
(m, 4 H). ¹³C NMR (100 MHz, CDCl3): δ = 70.7,
35.6, 33.7, 32.4, 24.3, 16.4.
Compound 4a: ¹H
NMR (400 MHz, CDCl3): δ = 4.74
(dd, J = 28.0,
8.0 Hz, 2 H), 3.98-3.92 (m, 1 H), 3.75 (dd, J = 12.0,
4.0 Hz, 1 H), 3.67 (dd, J = 12.0,
4.0 Hz, 1 H), 3.57 (dd, J = 12.0,
8.0 Hz, 1 H), 3.41 (s, 3 H), 2.75 (br, 1 H), 2.63 (d, J = 4.0 Hz,
2 H), 0.14 (s, 9 H). ¹³C NMR (100 MHz, CDCl3): δ = 102.6,
96.6, 87.4, 76.7, 72.0, 56.0, 36.4, 22.4, -0.0(4). IR (neat):
3437, 2958, 2899, 2177, 1420, 1250, 699, 646 cm-¹.
HRMS (EI): m/z [M - H]+ calcd
for C11H21BrO3Si: 307.0443; found:
307.0349.
Compound 4b: ¹H
NMR (400 MHz, CDCl3): δ = 4.77-4.68 (m,
2 H), 3.75-3.66 (m, 2 H), 3.49-3.45 (m, 1 H),
3.40 (d, J = 8.0
Hz, 3 H), 3.35-3.31 (m, 1 H), 2.75 (br, 1 H), 2.61 (d, J = 8.0 Hz,
2 H), 0.12 (d, J = 8.0
Hz, 9 H). ¹³C NMR (100 MHz, CDCl3): δ = 102.6,
96.7, 87.4, 78.4, 72.2, 56.1, 22.4, 11.0, -0.0(0).
Compound 5a: ¹H NMR (400 MHz,
CDCl3): δ = 3.79-3.72 (m,
2 H), 3.59 (dd, J = 12.0,
4.0 Hz, 1 H), 3.51-3.43 (m, 2 H), 3.35 (dd, J = 12.0,
8.0 Hz, 1 H), 2.76 (br, 2 H), 1.55-1.43 (m, 6 H), 1.40-1.30
(m, 4 H). ¹³C NMR (100 MHz, CDCl3): δ = 71.3,
71.0, 50.4, 40.4, 34.9, 34.0, 29.3, 29.2, 25.4, 25.3.
Compound 5b: ¹H NMR (400 MHz,
CDCl3): δ = 3.78-3.73 (m,
1 H), 3.57 (dd, J = 8.0,
4.0 Hz, 1 H), 3.50-3.42 (m, 2 H), 3.32 (dd, J = 8.0, 4.0
Hz, 1 H), 3.21-3.17 (m, 1 H), 3.04 (br, 2 H), 1.55-1.39
(m, 6 H), 1.38-1.26 (m, 4 H). ¹³C
NMR (100 MHz, CDCl3): δ = 71.3,
70.8, 50.3, 36.4, 34.0, 29.2, 25.5, 25.4, 16.3.
Compound 6a: ¹H NMR (400 MHz,
CDCl3): δ = 3.85-3.79 (m,
2 H), 3.56 (dd, J = 12.0,
4.0 Hz, 1 H), 3.48-3.38 (m, 3 H), 2.14 (d, J = 4.0 Hz,
1 H), 1.61-1.50 (m, 4 H), 1.43-1.32 (m, 6 H),
0.91 (s, 9 H), 0.10 (d, J = 8.0
Hz, 6 H). ¹³C NMR (100 MHz, CDCl3): δ = 72.4,
71.0, 48.5, 40.6, 35.0, 34.8, 29.5, 25.8, 25.5, 24.7, 18.1, -4.5, -4.6.
IR (neat): 3393, 2931, 2857, 1463, 1255, 1099, 837, 777 cm-¹.
Compound 6b: ¹H NMR (400 MHz,
CDCl3): δ = 3.85-3.80 (m,
1 H), 3.56-3.48 (m, 1 H), 3.46-3.38 (m, 3 H),
3.25 (dd, J = 12.0,
8.0 Hz, 1 H), 2.03 (d, J = 8.0
Hz, 1 H), 1.66-1.53 (m, 4 H), 1.46-1.31 (m, 6
H), 0.91 (s, 9 H), 0.10 (d, J = 4.0 Hz,
6 H). ¹³C NMR (100 MHz, CDCl3): δ = 72.4,
70.9, 48.5, 36.5, 34.8, 29.5, 25.8, 25.6, 24.7, 18.1, 16.6, -4.4, -4.6.