Subscribe to RSS
DOI: 10.1055/s-0029-1217702
Synthesis of Heterocycle-Annulated Medium-Sized Oxacycles and Lactone Derivative by Intramoleculer Heck Reaction
Publication History
Publication Date:
16 July 2009 (online)
Abstract
An efficient and convergent methodology for the highly strained medium-sized oxacyclic compounds and lactone derivatives has been developed via palladium-catalyzed intramoleculer Heck reaction.
Key words
intramoleculer Heck reaction - palladium acetate - 8-exo-trig - eight-membered oxacycle - lactone
-
1a
Tsuji J. Palladium Reagents and Catalysts: New Perspective for the 21st Century Wiley; Chichester: 2004. -
1b
Li JJ.Gribble GW. Palladium in Heterocyclic Chemistry: A Guide for the Synthetic Chemist Pergamon; Amsterdam: 2000. -
2a
Negishi E.Anastasia L. Chem. Rev. 2003, 103: 1979 -
2b
Negishi E.Coperet C.Ma S.Liou S.-Y.Liu F. Chem. Rev. 1996, 96: 365 - For some examples in which the coordination of N with metal controls or modifies the course transition-metal-promoted processes, see:
-
3a
Oestreich M.Dennison PR.Kodanko JJ.Overman LE. Angew. Chem. Int. Ed. 2001, 40: 1439 -
3b
Mauleón P.Alonso I.Carretero JC. Angew. Chem. Int. Ed. 2001, 40: 1291 -
3c
Olofsson K.Sahlin H.Larhed M.Hallberg A. J. Org. Chem. 2001, 66: 544 -
3d
Solé D.Cancho Y.Llebaria A.Moretó JM.Delgado A. J. Am. Chem. Soc. 1994, 116: 12133 - 4
Majumdar KC.Sinha B.Chattopadhyay B.Ray K. Tetrahedron Lett. 2008, 49: 4405 - 5
Majumdar KC.Chattopadhyay B.Sinha B. Synthesis 2008, 3857 - 6
Majumdar KC.Chattopadhyay B.Samanta S. Tetrahedron Lett. 2009, 50: 3178 -
7a
Majumdar KC.Alam S.Chattopadhyay B. Tetrahedron 2008, 64: 597 -
7b
Majumdar KC.Bhattacharyya T.Chattopadhyay B.Sinha B. Synthesis 2009, in press -
8a
Majumdar KC.Chattopadhyay B.Taher A. Synthesis 2007, 3647 -
8b
Majumdar KC.Pal AK.Taher A.Debnath P. Synthesis 2007, 1701 -
8c
Majumdar KC.Chattopadhyay B. Synlett 2008, 979 -
8d
Majumdar KC.Chattopadhyay B.Nath S. Tetrahedron Lett. 2008, 49: 1609 -
8e
Majumdar KC.Chattopadhyay B.Pal AK. Lett. Org. Chem. 2008, 5: 276 -
8f
Majumdar KC.Chattopadhyay B. Synthesis 2009, in press -
8g
Majumdar KC.Chattopadhyay B.Chakravorty S. Synthesis 2009, 674 -
9a
Evans PA.Holmes AB. Tetrahedron 1991, 47: 9131 -
9b
Mehta G.Singh V. Chem. Rev. 1999, 99: 881 -
9c
Yet L. Chem. Rev. 2000, 100: 2963 -
10a
Basil B.Coffee ECJ.Gell DL.Maxwell DR.Sheffield DJ.Wooldridge KRH. J. Med. Chem. 1970, 13: 403 -
10b
Klayman DL.Scovill JP.Bartosevich JF.Mason CJ. J. Med. Chem. 1979, 22: 1367 -
10c
Vedejs E.Galante RJ.Goekjian PG. J. Am. Chem. Soc. 1998, 120: 3613 -
10d
Ma D.Tang G.Kozikowski AP. Org. Lett. 2002, 4: 2377 -
10e
Staerk D.Witt M.Oketch-Rabah HA.Jaroszewski JW. Org. Lett. 2003, 5: 2793 ; and references cited therein -
11a
Evans PA.Holmes AB.Russel K. Tetrahedron: Asymmetry 1990, 1: 593 -
11b
Kitano T.Shirai N.Motoi M.Sato Y. J. Chem. Soc., Perkin Trans. 1 1992, 2851 -
11c
Crombie L.Haigh D.Jones RCF.Mat-Zin AR. J. Chem. Soc., Perkin Trans. 1 1993, 2047 -
11d
Coates WJ.Dhanak D. Heterocycles 1993, 36: 1631 -
11e
Wright DL.Weekly RM.Groff R.McMills MC. Tetrahedron Lett. 1996, 37: 2165 -
11f
Bergmann DJ.Campi EM.Jackson WR.Patti AF.Saylik D. Tetrahedron Lett. 1999, 40: 5597 -
11g
Ouyang X.Kiselyov AS. Tetrahedron 1999, 55: 8295 - 12
Illuminati G.Mandolini L. Acc. Chem. Res. 1981, 14: 95 - 13
Nicolaou KC.Sorensen EJ. Classics in Total Synthesis Wiley; New York: 1996. Chap. 13. -
14a
Grigg R.Sridharan V.Sukirthalingam S. Tetrahedron Lett. 1991, 32: 3855 -
14b
Meyer FE.Parsons PJ.de Meijere A. J. Org. Chem. 1991, 56: 6487 -
14c
Grigg R.Dorrity MJ.Malone JF.Sridharan V.Sukirthalingam S. Tetrahedron Lett. 1990, 31: 1343 -
14d
Zhang Y.Negishi E.-i. J. Am. Chem. Soc. 1989, 111: 3454 -
15a
Beletskaya IP.Cheprakov AV. Chem. Rev. 2000, 100: 3009 -
15b
Majumdar KC.Chattopadhyay B. Curr. Org. Chem. 2009, in press - 16
Gibson SE.Guillo N.Middleton RJ.Thuilliez A.Tozer MJ. J. Chem. Soc., Perkin Trans. 1 1997, 447 -
17a
Gazith M.Noys RM. J. Am. Chem. Soc. 1955, 77: 6091 -
17b
Gardner IJ.Noys RM. J. Am. Chem. Soc. 1961, 83: 2409 -
19a
Larock RC.Yum EK.Refvik MD. J. Org. Chem. 1998, 63: 7652 -
19b
Hallberge A.Ripa L. J. Org. Chem. 1997, 62: 595 -
19c
Madin A.O’Donnell CJ.Oh T.Old DW.Overman LE.Sharp M. J. Am. Chem. Soc. 2005, 127: 18054 -
20a
Vallin KSA.Emilsson P.Larhed M.Hallberg A. J. Org. Chem. 2002, 67: 6243 -
20b
Wan Q.-X.Liu Y.Lu Y.Li M.Wu H.-H. Catal. Lett. 2008, 121: 331 -
20c
Mo J.Xiao J. Angew. Chem. Int. Ed. 2006, 45: 4152 -
21a
Hagiwara H.Sugawara Y.Hoshi T.Suzuki T. Chem. Commun. 2005, 2942 -
21b
Botella L.Najera C. Tetrahedron Lett. 2004, 45: 1833 - 23
Leggy AA.Wenchen L.Guy RK. Org. Lett. 2004, 6: 3005
References and Notes
General Procedure
for the Synthesis of the Compound by Heck Reaction
A
mixture of 3a (70 mg, 0.182 mmol), TBAB
(147 mg, 0.455 mmol), and dry KOAc (26 mg, 0.265 mmol) was taken in
dry DMF (10 mL). Pd(OAc)2 (10 mol%, 4.1 mg)
was added, and the mixture was stirred on an oil bath at 110 ˚C for
ca. 2 h. The reaction mixture was cooled, DMF was removed under
reduced pressure, H2O (3 mL) was added and extracted
with EtOAc (3 × 20 mL) and washed with
H2O (2 × 20 mL), followed
by brine (20 mL). The organic layer was dried (Na2SO4),
and the solvent was distilled off to furnish a viscous mass which
was purified by column chromatography over silica gel. Elution of
the column with 20% EtOAc-hexane afforded the
product 8a. Similarly, other compounds
were synthesized.
Compound 8a:
white solid, mp 174 ˚C. IR (KBr): 2918, 2899,
1643, 1600 cm-¹
. ¹H
NMR (400 MHz, CDCl3): δ = 3.66
(s, 3 H, NCH3), 4.02 (s, 2 H,=CCH2),
5.17 (s, 1 H, =CHa), 5.42 (s, 1 H, =CHb),
5.48 (s, 2 H, OCH2), 7.12-7.19 (m, 4 H, ArH),
7.20 (t, 1 H, J = 7.88
Hz, ArH), 7.25 (d, 1 H, J = 5.2
Hz, ArH), 7.43 (t, 1 H, J = 7.80
Hz, ArH), 7.65 (d, 1 H, J = 7.96
Hz, ArH). ¹³C NMR (75 MHz, CDCl3): δ = 29.67,
36.98, 73.86, 114.17, 114.26, 120.53, 122.31, 123.83, 127.86, 128.37,
128.45, 128.65, 128.69, 133.47, 133.93, 137.01, 141.33, 143.94,
148.03, 159.00. MS (TOF MS ES+): m/z = 326.13 [M + Na+].
Anal. Calcd (%) for C20H17NO2:
C, 79.19; H, 5.65; N, 4.62. Found: C, 79.29; H, 5.77; N, 4.57.
The spectral data, especially NMR
studies, showed that the OCH2 protons appears as two
separate singlets which is further supported by the DEPT experiment.
DEPT contains two extra methylene groups due to the rapid interconversion of
the existing possible conformers.
Compound 10b:
yellow solid, mp 250 ˚C. IR (KBr): 2941, 2838,
1647, 1625 cm-¹
. ¹H
NMR (300 MHz, CDCl3): δ = 3.45-3.61
(m, 2 H, =CHCH
2),
3.80 (s, 3 H, OCH3), 4.89 (s, 1 H, OCHa),
5.44 (s, 1 H, OCHb), 6.74 (d, 1 H, J = 11.4 Hz, =CHa),
7.11-7.15 (m, 1 H, =CHb), 7.19-7.22
(m, 5 H, ArH), 7.43-7.54 (m, 4 H, ArH), 8.23 (d, 1 H, J = 7.5 Hz, ArH),
8.46 (d, 1 H, J = 3.2
Hz, ArH). ¹³C NMR (75 MHz, CDCl3): δ = 31.6,
59.4, 109.2, 112.6, 112.7, 115.1, 119.2, 125.3, 125.8, 128.5, 128.9,
129.5, 136.0, 136.7, 138.8, 138.3, 154.1, 154.7, 159.8, 172.5, 194.6.
(TOF MS ES+):
m/z = 419.08 [M + Na].
Anal. Calcd (%) for C25H20N2O3:
C, 75.74; H, 5.08; N, 7.07. Found: C, 75.81; H, 5.03; N, 7.21.