Subscribe to RSS
DOI: 10.1055/s-0029-1218018
Synthesis of Furanoid Amino Acids via a Domino Michael-Aldol-Addition-Cyclization Approach
Publication History
Publication Date:
10 September 2009 (online)
Abstract
Chelated enolates undergo Michael addition towards halogenated α,β-unsaturated esters in a highly stereoselective fashion. The enolates formed can be trapped with aldehydes in a stereoselective aldol reaction, before subsequent cyclization gives rise to substituted furanoid amino acids. Up to for stereogenic centers can be formed in this new one-pot reaction.
Key words
aldol reaction - amino acids - chelates - cyclization - domino reaction - Michael addition
- Reviews:
-
1a
Bioactive
Marine Natural Products
Bhakuni DS.Rawat DS.Rawar DS. Springer; New York: 2005. -
1b
Blunt JW.Copp BR.Hu W.-P.Munro MHG.Northcote PT.Prinsep MR. Nat. Prod. Rep. 2008, 25: 35 ; and references cited therein -
2a
Bergmann W.Feeney RJ. J. Am. Chem. Soc. 1950, 72: 2809 -
2b
Quinn RJ.Gregson RP.Cool AF.Bartlett RT. Tetrahedron Lett. 1980, 21: 567 -
3a
Gehringer MM. FEBS Lett. 2004, 557: 1 -
3b
Pihko PM.Aho JE. Org. Lett. 2004, 6: 3849 -
3c
Evans DA.Rajapakse HA.Chiu A.Stenkamp D. Angew. Chem. Int. Ed. 2002, 41: 4573 ; Angew. Chem. 2002, 114, 4755 - 4
Katagiri K.Tori K.Kimura Y.Yoshida T.Nagasaki T.Minato H. J. Med. Chem. 1967, 10: 1149 -
5a
Tanaka K.Tomaki M.Watanabe S. Biochim. Biophys. Acta 1969, 159: 244 -
5b
Kohno T.Kohda D.Haruki M.Yokoyama S. J. Biol. Chem. 1990, 12: 6931 -
5c
Kazmaier U.Pähler S.Endermann R.Häbich D.Kroll H.-P.Riedl B. Bioorg. Med. Chem. 2002, 10: 3905 -
6a
Sakai R.Kamiyla H.Murata M.Shimamoto K. J. Am. Chem. Soc. 1997, 119: 4112 -
6b
Sakai R.Koike T.Sasaki M.Shimamoto K.Oiwa C.Yano A.Suzuki K.Tachibana K.Kamiya H. Org. Lett. 2001, 3: 1479 -
6c
Sanders J.Ito K.Settimo L.Pentikainen O.Shoji M.Sasaki M.Johnson M.Sakai R.Swanson G. J. Pharmacol. Exp. Ther. 2005, 314: 1068 - 7 Review:
Moloney MG. Nat. Prod. Rep. 2002, 19: 597 ; and references cited therein - Reviews:
-
8a
Kazmaier U. Amino Acids 1996, 11: 283 -
8b
Kazmaier U. Liebigs Ann./Recl. 1997, 285 -
8c
Bauer M.Kazmaier U. Recent Res. Dev. Org. Chem. 2005, 9: 49 ; and references cited therein -
9a
Pohlman M.Kazmaier U. Org. Lett. 2003, 5: 2631 -
9b
Pohlman M.Kazmaier U.Lindner T. J. Org. Chem. 2004, 69: 6909 -
9c
Mendler B.Kazmaier U.Huch V.Veith M. Org. Lett. 2005, 7: 2643 -
9d
Mendler B.Kazmaier U. Synthesis 2005, 2239 - 10
Kazmaier U.Schmidt C. Synlett 2009, 1136 - 11
Kazmaier U.Schmidt C. Synthesis 2009, 2435 - 12
Schmidt C.Kazmaier U. Org. Biomol. Chem. 2008, 6: 4643 - 13
Schmidt C.Kazmaier U. Eur. J. Org. Chem. 2008, 887
References and Notes
Michael Product
8
¹H NMR (500 MHz, CDCl3): δ = 1.47
(s, 9 H), 2.82-2.88 (m, 1 H), 3.58 (dd, J = 11.5,
6.4 Hz, 1 H), 3.63 (dd, J = 11.5, 6.2
Hz, 1 H), 3.65-3.69 (m, 1 H), 3.70 (s, 3 H), 4.72 (dd, J = 4.9, 8.2
Hz, 1 H), 7.62 (d, J = 8.2
Hz, 1 H). ¹³C
NMR (125 MHz, CDCl3): δ = 27.9
(q), 33.0 (t), 39.6 (t), 44.5 (d), 52.3 (q), 54.1 (d), 84.2 (s),
115.7 (q, J = 287.7
Hz), 157.4 (q, J = 37.6
Hz), 168.2 (s), 172.4 (s). HRMS (CI): m/z calcd
for C13H20NO5F3Cl [M + H]+:
362.0937; found: 362.1010.
Cyclopropyl Amino
Acid 9
¹H NMR (500 MHz, CDCl3): δ = 1.06
(ddd, J = 8.9,
5.7, 5.7 Hz, 1 H), 1.29 (ddd, J = 9.2,
5.2, 5.2 Hz, 1 H), 1.49 (s, 9 H), 1.71-1.75 (m, 1 H), 1.84
(dt, J = 8.8,
4.6 Hz, 1 H), 3.67 (s, 3 H), 4.07-4.12 (m, 1 H), 6.98 (d, J = 7.9 Hz,
1 H). ¹³C NMR (125 MHz, CDCl3): δ = 12.7
(t), 17.7 (d), 23.6 (d), 27.5 (q), 51.8 (q), 54.3 (d), 83.8 (s),
115.4 (q, J = 287.8
Hz), 156.6 (q, J = 37.6
Hz), 168.2 (s), 173.0 (s). HRMS (CI): m/z calcd
for C13H19F3NO5 [M + H]+:
326.1215; found: 326.1258. Anal. Calcd for C13H18F3NO5 (325.28):
C, 48.00; H, 5.58; N, 4.31. Found: C, 48.07; H, 5.39; N, 4.28.
Michael-Aldol
Product 10a
Major diastereomer: ¹H
NMR (500 MHz, CDCl3): δ = 1.50 (s,
9 H), 3.08-3.12 (m, 1 H), 3.19 (dd, J = 9.9,
4.4 Hz, 1 H), 3.66 (br s, 1 H), 3.41 (s, 3 H), 3.91 (dd, J = 12.1,
4.0 Hz, 1 H), 4.00 (dd, J = 12.1,
5.9 Hz, 1 H), 4.81 (dd, J = 8.4,
4.6 Hz, 1 H), 5.10 (d, J = 4.4
Hz, 1 H), 7.24-7.34 (m, 6 H). ¹³C
NMR (125 MHz, CDCl3): δ = 27.8
(q), 41.8 (d), 43.8 (t), 50.6 (d), 52.0 (s), 53.7 (d), 71.3 (d),
84.4 (s), 115.6 (q, J = 287.8
Hz), 124.9 (d), 128.4 (d), 127.8 (d), 140.8 (s), 156.9 (q, J = 38.0 Hz),
168.2 (s), 173.4 (s).
Minor diastereomer: ¹H
NMR (500 MHz, CDCl3): δ = 1.47 (s,
9 H), 2.90-2.95 (m, 1 H), 3.01 (dd, J = 9.8,
1.4 Hz, 1 H), 3.08 (br s, 1 H), 3.40 (s, 3 H), 3.73 (t, J = 10.9 Hz,
1 H), 4.11 (dd, J = 19.9,
5.0 Hz, 1 H), 4.91 (d, J = 9.8
Hz, 1 H), 4.95 (dd, J = 8.4,
4.8 Hz, 1 H), 7.26-7.35 (m, 5 H), 9.05 (d, J = 8.3 Hz,
1 H). ¹³C NMR (125 MHz, CDCl3): δ = 27.8
(q), 41.6 (t), 42.8 (d), 52.1 (d), 52.3 (s), 52.5 (d), 71.8 (d),
83.5 (s), 115.6 (q, J = 287.8
Hz), 126.6 (d), 128.8 (d), 129.1 (d), 140.3 (s), 156.9 (q, J = 38.0 Hz),
168.5 (s), 172.0 (s).
General Procedure for Domino Michael-Aldol Additions-Cyclizations In a Schlenk flask HMDS (0.3 mL, 1.42 mmol) was dissolved in THF (2 mL). The solution was cooled to -78 ˚C before n-BuLi (1.6 M, 0.78 mL, 1.25 mmol) was added. The cooling bath was removed and the solution was allowed to warm up for 15 min, before it was cooled again to -90 ˚C. In a second Schlenk flask ZnCl2 (80 mg, 0.57 mmol) was dried with a heat gun under high vacuum, before it was dissolved in THF (3 mL). After addition of TFA-Gly-Ot-Bu (115 mg, 0.5 mmol) the solution was cooled to -90 ˚C, before the freshly prepared LHMDS solution was added. 20 min later the Michael acceptor (0.42 mmol) was added in THF (2 mL). After 2 h the corresponding aldehyde (0.85 mmol) was added, and the reaction mixture was hold at -60 ˚C for 6 h. After addition of DMPU (1.5 mL) the reaction mixture was allowed to warm to r.t. overnight. The solution was diluted with hexanes-Et2O (9:1) before it was washed twice with NH4Cl (20 mL each). The aqueous phase was extracted twice with CH2Cl2, and the combined organic layers were dried (Na2SO4). After evaporation of the solvent under vacuum the crude product was purified by flash chromatography (silica, hexanes-EtOAc).
18
Spectroscopic
and Analytical Data of Selected Products 11a
4,5-syn-11a: ¹H
NMR (500 MHz, CDCl3): δ = 1.48
(s, 9 H), 3.19 (s, 3 H), 3.20 (dtd, J = 9.6,
8.9, 7.5 Hz, 1 H), 3.33 (t, J = 8.9
Hz, 1 H), 3.80 (t, J = 9.6
Hz, 1 H), 4.39 (dd, J = 9.2, 7.5
Hz 1 H), 4.53 (t, J = 9.0
Hz, 1 H), 4.91 (d, J = 8.5
Hz, 1 H), 7.01 (d, J = 8.9
Hz, 1 H), 7.20-7.30 (m, 5 H). ¹³C
NMR (125 MHz, CDCl3): δ = 27.9
(q), 44.7 (d), 51.7 (q), 53.4 (d), 54.1 (d), 70.9 (t), 82.5 (d),
84.3 (s), 115.6 (q, J = 287.6
Hz), 126.5 (d), 128.0 (d), 128.2 (d), 137.9 (s), 157.0 (q, J = 38.0 Hz),
168.2 (s), 171.8 (s).
4,5-anti-11a: ¹H NMR (500 MHz,
CDCl3): δ = 1.46
(s, 9 H), 2.92 (t, J = 8.2
Hz, 1 H), 3.13-3.18 (m, 1 H), 3.68 (s, 3 H), 4.13 (d, J = 7.0 Hz,
2 H), 4.55 (t, J = 8.2
Hz, 1 H), 4.96 (d, J = 8.4
Hz, 1 H), 7.13 (d, J = 8.2
Hz, 1 H), 7.20-7.36 (m, 5 H). ¹³C
NMR (125 MHz, CDCl3): δ = 46.7
(d), 52.5 (q), 55.2 (d), 55.2 (d), 70.3 (t), 83.9 (d), 84.2 (s),
115.6 (q, J = 287.6 Hz),
125.8 (d), 128.6 (d), 128.2 (d), 139.2 (s), 157.0 (q, J = 38.0 Hz),
168.2 (s), 171.8 (s). HRMS (CI): m/z calcd
for C20H25F3NO6 [M + H]+:
432.1634; found: 432.1658. Anal. Calcd for C20H24F3NO6 (431.41):
C, 55.68; H, 5.61; N, 3.25. Found: C, 55.63; H, 5.61; N, 3.04.