Subscribe to RSS
DOI: 10.1055/s-0029-1218020
Palladium-Catalyzed Cross-Coupling Reactions of 2-Pyridylborates with Air-Stable HASPO Preligands
Publication History
Publication Date:
10 September 2009 (online)
Abstract
A novel, air-stable TADDOLP(O)H derivative bearing electron-withdrawing substituents allows for efficient Suzuki-Miyaura cross-couplings with challenging electron-deficient 2-pyr-idylborates as nucleophiles.
Key words
borates - cross-coupling - heteroarenes - palladium - pyr-idines
- 1
Modern
Arylation Methods
Ackermann L. Wiley-VCH; Weinheim: 2009. - 2
Transition
Metals for Organic Synthesis
2nd ed.:
Beller M.Bolm C. Wiley-VCH; Weinheim: 2004. - 3
Tsuji J. Palladium Reagents and Catalysts 2nd ed.: Wiley; Chichester: 2004. - 4
Suzuki A. J. Organomet. Chem. 1999, 576: 147 - 5
Littke AF. In Modern Arylation MethodsAckermann L. Wiley-VCH; Weinheim: 2009. p.25 - 6
Herrmann WA. Angew. Chem. Int. Ed. 2002, 41: 1290 - 7
N-Heterocyclic
Carbenes in Synthesis
Nolan SP. Wiley-VCH; Weinheim: 2006. - For selected recent examples of and reviews on palladium-catalyzed Suzuki-Miyaura reactions with aryl-substituted nucleophiles, see:
-
8a
Organ MG.Çalimsiz S.Sayah M.Hoi KH.Lough AJ. Angew. Chem. Int. Ed. 2009, 48: 2383 -
8b
Diebolt O.Braunstein P.Nolan SP.Cazin CSJ. Chem. Commun. 2008, 3190 -
8c
So CM.Lau CP.Kwong FY. Angew. Chem. Int. Ed. 2008, 47: 8059 -
8d
Martin R.Buchwald SL. Acc. Chem. Res. 2008, 41: 1461 -
8e
Doucet H. Eur. J. Org. Chem. 2008, 2013 ; and references cited therein - For representative recent examples involving the use of heteroaromatic nucleophiles, see:
-
9a
Molander GA.Canturk B.Kennedy LE. J. Org. Chem. 2009, 74: 973 -
9b
Fleckenstein CA.Plenio H. J. Org. Chem. 2008, 73: 3236 -
9c
Billingsley K.Buchwald SL. J. Am. Chem. Soc. 2007, 129: 3358 -
9d
Billingsley KL.Anderson KW.Buchwald SL. Angew. Chem. Int. Ed. 2006, 45: 3484 -
9e
Kudo N.Perseghini M.Fu GC. Angew. Chem. Int. Ed. 2006, 45: 1282 ; and references cited therein -
9f For ligand-free Suzuki-Miyaura
coupling reactions catalyzed by Pd/C, see:
Kitamura Y.Sako S.Udzu T.Tsutsui A.Maegawa T.Monguchi Y.Sajiki H. Chem. Commun. 2007, 5069 -
9g
Maegawa T.Kitamura Y.Sako S.Udzu T.Sakurai A.Tanaka A.Kobayashi Y.Endo K.Bora U.Kurita T.Kozaki A.Monguchi Y.Sajiki H. Chem. Eur. J. 2007, 13: 5937 -
10a
Hapke M.Brandt L.Lützen A. Chem. Soc. Rev. 2008, 37: 2782 -
10b
Tyrrell E.Brookes P. Synthesis 2004, 469 - 11
Campeau L.-C.Fagnou K. Chem. Soc. Rev. 2007, 36: 1058 - 12
Dubrovina NV.Börner A. Angew. Chem. Int. Ed. 2004, 43: 5883 - 13
Ackermann L. Synthesis 2006, 1557 - 14
Ackermann L. In Trivalent Phosphorus Compounds in Asymmetric Catalysis, Synthesis and ApplicationsBörner A. Wiley-VCH; Weinheim: 2008. p.831 - For representative recent examples of secondary phosphine oxides as preligands in catalytic C-C bond formation, see:
-
15a
Xu H.Ekoue-Kovi K.Wolf C. J. Org. Chem. 2008, 73: 7638 -
15b
Ackermann L.Vicente R.Althammer A. Org. Lett. 2008, 10: 2299 -
15c
Wolf C.Ekoue-Kovi K. Eur. J. Org. Chem. 2006, 1917 -
15d
Ackermann L. Org. Lett. 2005, 7: 3123 -
15e
Li GY. Angew. Chem. Int. Ed. 2001, 40: 1513 ; and references cited therein - 16
Billingsley KL.Buchwald SL. Angew. Chem. Int. Ed. 2008, 47: 4695 -
17a
Yang DX.Colletti SL.Wu K.Song M.Li GY.Shen HC. Org. Lett. 2009, 11: 381 -
17b See also:
Deng JZ.Paone DV.Ginnetti AT.Kurihara H.Dreher SD.Weissman SA.Stauffer SR.Burgey CS. Org. Lett. 2009, 11: 345 -
17c For recent examples of
cross-coupling reactions with MIDA boronates, see:
Knapp DM.Gillis EP.Burke MD. J. Am. Chem. Soc. 2009, 131: 6961 -
18a
Ackermann L.Althammer A. Chem. Unserer Zeit 2009, 43: 74 -
18b
Ackermann L.Born R.Spatz JH.Althammer A.Gschrei CJ. Pure Appl. Chem. 2006, 78: 209 - 19
Ackermann L. Synlett 2007, 507 - For selected recent representative examples, see:
-
20a
Ackermann L.Mulzer M. Org. Lett. 2008, 10: 5043 -
20b
Ackermann L.Althammer A.Born R. Angew. Chem. Int. Ed. 2006, 45: 2619 -
20c
Ackermann L.Gschrei CJ.Althammer A.Riederer M. Chem. Commun. 2006, 1419 -
20d
Ackermann L.Althammer A. Org. Lett. 2006, 8: 3457 -
20e
Ackermann L.Born R.Spatz JH.Meyer D. Angew. Chem. Int. Ed. 2005, 44: 7216 -
20f
Ackermann L.Born R. Angew. Chem. Int. Ed. 2005, 44: 2444 - 21
Surry DS.Buchwald SL. Angew. Chem. Int. Ed. 2008, 47: 6338 - 22
Enders D.Tedeschi L.Bats JW. Angew. Chem. Int. Ed. 2000, 39: 4605 - 23
Linghu X.Potnick JR.Johnson JS. J. Am. Chem. Soc. 2004, 126: 3070
References and Notes
Analytical Data for HASPO 6d: Mp 202.9-203.4 ˚C. ¹H NMR
(300 MHz, CDCl3): δ = 7.67-7.45
(m, 6 H), 7.19-7.15 (m, 2 H), 6.94-6.78
(m, 8 H), 6.89 (d, J
H-P = 744
Hz, 1 H), 5.67 (d, J = 8.3
Hz, 1 H), 5.18 (d, J = 8.3
Hz, 1 H), 0.71 (s, 3 H), 0.68 (s, 3 H). ¹³C
NMR (75 MHz, CDCl3): δ = 162.5 (Cq,
¹
J
F-C = 248
Hz), 162.5 (Cq,
¹
J
F-C = 248
Hz), 162.3 (Cq,
¹
J
F-C = 248
Hz), 162.3 (Cq,
¹
J
F-C = 248
Hz), 139.3 (Cq, 4
J
F-C = 3
Hz), 139.3 (Cq, 4
J
F-C = 3
Hz), 138.7 (Cq, 4
J
F-C =
3
Hz), 134.5 (Cq, 4
J
F-C = 3
Hz), 130.7 (CH, ³
J
F-C = 8
Hz), 130.0 (CH, ³
J
F-C = 8
Hz), 128.6 (CH, ³
J
F-C = 8
Hz), 128.6 (CH, ³
J
F-C = 8
Hz), 115.6 (CH, ²
J
F-C = 21
Hz), 115.4 (CH, ²
J
F-C = 22
Hz), 114.6 (Cq), 114.5 (CH, ²
J
F-C = 22
Hz), 114.3 (CH, ²
J
F-C = 22
Hz), 88.7 (Cq), 87.6 (Cq), 80.0 (CH), 79.5 (CH),
26.8 (CH3), 26.6 (CH3). ³¹P
NMR (121 MHz, CDCl3): δ = -2.5. ¹9F
NMR (282 MHz, CDCl3): δ = -112.4
(m),
-112.9 (m), -113.9 (m), -114.1
(m). IR (KBr): 3424, 2993, 2903, 2354, 2344, 1601, 1506, 1268, 1161,
1082, 937, 847, 762 cm-¹. HR-MS (ESI): m/z calcd
for C31H24F4O5P: 583.1303;
found: 583.1306.
Synthesis of 3b (Table
[²]
, entry 1); Typical procedure:
A suspension of Pd2dba3 (4.6 mg, 0.005 mmol,
1.0 mol%), 6d (11.7 mg, 0.020
mmol, 4.0 mol%), K3PO4 (318 mg, 1.50 mmol), 1a (205 mg, 0.75 mmol), 2b (147 mg,
0.50 mmol) in 1,4-dioxane (2.0 mL) was stirred under N2 for
20 h at 110 ˚C. After the reaction mixture was
cooled to ambient temperature, MTBE (50 mL) and H2O (50
mL) were added. The separated aqueous phase was extracted with MTBE (3 × 50
mL). The combined organic layers were washed with brine (50 mL),
dried over Na2SO4 and concentrated in vacuo. The
remaining residue was purified by column chromatog-raphy on silica
gel (n-hexane-EtOAc, 9:1) to
yield 3b (114 mg, 78%) as a white
solid (mp 45.0 ˚C). ¹H NMR
(300 MHz, CDCl3): δ = 8.75 (dt, J = 4.8, 1.4
Hz, 1 H), 8.48 (s, 2 H), 7.91 (s, 1 H),
7.88-7.77 (m, 2 H), 7.40-7.29 (m, 1 H). ¹³C
NMR (75 MHz, CDCl3): δ = 154.1 (Cq),
150.1 (CH), 141.3 (Cq), 137.2 (CH), 132.1 (Cq, ²
J
F-C = 33
Hz), 126.9 (CH, ³
J
F-C =
4
Hz), 123.6 (CH), 123.4 (Cq, ¹
J
F-C = 273
Hz), 122.3 (CH, ³
J
F-C = 4
Hz), 120.6 (CH). ¹9F NMR (282 MHz, CDCl3): δ = -62.9.
IR (KBr): 3897, 2927, 1591, 1455, 1382, 1279, 1136, 897, 785, 683
cm-¹. MS (EI): m/z (%) = 291 (100) [M+],
272 (22), 252 (10), 222 (38), 202 (12), 83 (28), 71 (34), 57 (66), 43
(64). HR-MS (EI): m/z calcd for C13H7F6N:
292.0555; found: 292.0557. The spectral data were in accordance
with those reported in the literature.¹6