Synlett 2009(17): 2852-2856  
DOI: 10.1055/s-0029-1218020
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Palladium-Catalyzed Cross-Coupling Reactions of 2-Pyridylborates with Air-Stable HASPO Preligands

Lutz Ackermann*, Harish K. Potukuchi
Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
Fax: +49(551)396777; e-Mail: Lutz.Ackermann@chemie.uni-goettingen.de;
Further Information

Publication History

Received 12 July 2009
Publication Date:
10 September 2009 (online)

Abstract

A novel, air-stable TADDOLP(O)H derivative bearing electron-withdrawing substituents allows for efficient Suzuki-Miyaura cross-couplings with challenging electron-deficient 2-pyr-idylborates as nucleophiles.

    References and Notes

  • 1 Modern Arylation Methods   Ackermann L. Wiley-VCH; Weinheim: 2009. 
  • 2 Transition Metals for Organic Synthesis   2nd ed.:  Beller M. Bolm C. Wiley-VCH; Weinheim: 2004. 
  • 3 Tsuji J. Palladium Reagents and Catalysts   2nd ed.:  Wiley; Chichester: 2004. 
  • 4 Suzuki A. J. Organomet. Chem.  1999,  576:  147 
  • 5 Littke AF. In Modern Arylation Methods   Ackermann L. Wiley-VCH; Weinheim: 2009.  p.25 
  • 6 Herrmann WA. Angew. Chem. Int. Ed.  2002,  41:  1290 
  • 7 N-Heterocyclic Carbenes in Synthesis   Nolan SP. Wiley-VCH; Weinheim: 2006. 
  • For selected recent examples of and reviews on palladium-catalyzed Suzuki-Miyaura reactions with aryl-substituted nucleophiles, see:
  • 8a Organ MG. Çalimsiz S. Sayah M. Hoi KH. Lough AJ. Angew. Chem. Int. Ed.  2009,  48:  2383 
  • 8b Diebolt O. Braunstein P. Nolan SP. Cazin CSJ. Chem. Commun.  2008,  3190 
  • 8c So CM. Lau CP. Kwong FY. Angew. Chem. Int. Ed.  2008,  47:  8059 
  • 8d Martin R. Buchwald SL. Acc. Chem. Res.  2008,  41:  1461 
  • 8e Doucet H. Eur. J. Org. Chem.  2008,  2013 ; and references cited therein
  • For representative recent examples involving the use of heteroaromatic nucleophiles, see:
  • 9a Molander GA. Canturk B. Kennedy LE. J. Org. Chem.  2009,  74:  973 
  • 9b Fleckenstein CA. Plenio H. J. Org. Chem.  2008,  73:  3236 
  • 9c Billingsley K. Buchwald SL. J. Am. Chem. Soc.  2007,  129:  3358 
  • 9d Billingsley KL. Anderson KW. Buchwald SL. Angew. Chem. Int. Ed.  2006,  45:  3484 
  • 9e Kudo N. Perseghini M. Fu GC. Angew. Chem. Int. Ed.  2006,  45:  1282 ; and references cited therein
  • 9f For ligand-free Suzuki-Miyaura coupling reactions catalyzed by Pd/C, see: Kitamura Y. Sako S. Udzu T. Tsutsui A. Maegawa T. Monguchi Y. Sajiki H. Chem. Commun.  2007,  5069 
  • 9g Maegawa T. Kitamura Y. Sako S. Udzu T. Sakurai A. Tanaka A. Kobayashi Y. Endo K. Bora U. Kurita T. Kozaki A. Monguchi Y. Sajiki H. Chem. Eur. J.  2007,  13:  5937 
  • 10a Hapke M. Brandt L. Lützen A. Chem. Soc. Rev.  2008,  37:  2782 
  • 10b Tyrrell E. Brookes P. Synthesis  2004,  469 
  • 11 Campeau L.-C. Fagnou K. Chem. Soc. Rev.  2007,  36:  1058 
  • 12 Dubrovina NV. Börner A. Angew. Chem. Int. Ed.  2004,  43:  5883 
  • 13 Ackermann L. Synthesis  2006,  1557 
  • 14 Ackermann L. In Trivalent Phosphorus Compounds in Asymmetric Catalysis, Synthesis and Applications   Börner A. Wiley-VCH; Weinheim: 2008.  p.831 
  • For representative recent examples of secondary phosphine oxides as preligands in catalytic C-C bond formation, see:
  • 15a Xu H. Ekoue-Kovi K. Wolf C. J. Org. Chem.  2008,  73:  7638 
  • 15b Ackermann L. Vicente R. Althammer A. Org. Lett.  2008,  10:  2299 
  • 15c Wolf C. Ekoue-Kovi K. Eur. J. Org. Chem.  2006,  1917 
  • 15d Ackermann L. Org. Lett.  2005,  7:  3123 
  • 15e Li GY. Angew. Chem. Int. Ed.  2001,  40:  1513 ; and references cited therein
  • 16 Billingsley KL. Buchwald SL. Angew. Chem. Int. Ed.  2008,  47:  4695 
  • 17a Yang DX. Colletti SL. Wu K. Song M. Li GY. Shen HC. Org. Lett.  2009,  11:  381 
  • 17b See also: Deng JZ. Paone DV. Ginnetti AT. Kurihara H. Dreher SD. Weissman SA. Stauffer SR. Burgey CS. Org. Lett.  2009,  11:  345 
  • 17c For recent examples of cross-coupling reactions with MIDA boronates, see: Knapp DM. Gillis EP. Burke MD. J. Am. Chem. Soc.  2009,  131:  6961 
  • 18a Ackermann L. Althammer A. Chem. Unserer Zeit  2009,  43:  74 
  • 18b Ackermann L. Born R. Spatz JH. Althammer A. Gschrei CJ. Pure Appl. Chem.  2006,  78:  209 
  • 19 Ackermann L. Synlett  2007,  507 
  • For selected recent representative examples, see:
  • 20a Ackermann L. Mulzer M. Org. Lett.  2008,  10:  5043 
  • 20b Ackermann L. Althammer A. Born R. Angew. Chem. Int. Ed.  2006,  45:  2619 
  • 20c Ackermann L. Gschrei CJ. Althammer A. Riederer M. Chem. Commun.  2006,  1419 
  • 20d Ackermann L. Althammer A. Org. Lett.  2006,  8:  3457 
  • 20e Ackermann L. Born R. Spatz JH. Meyer D. Angew. Chem. Int. Ed.  2005,  44:  7216 
  • 20f Ackermann L. Born R. Angew. Chem. Int. Ed.  2005,  44:  2444 
  • 21 Surry DS. Buchwald SL. Angew. Chem. Int. Ed.  2008,  47:  6338 
  • 22 Enders D. Tedeschi L. Bats JW. Angew. Chem. Int. Ed.  2000,  39:  4605 
  • 23 Linghu X. Potnick JR. Johnson JS. J. Am. Chem. Soc.  2004,  126:  3070 
24

Analytical Data for HASPO 6d: Mp 202.9-203.4 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 7.67-7.45 (m, 6 H), 7.19-7.15 (m, 2 H), 6.94-6.78 (m, 8 H), 6.89 (d, J H-P = 744 Hz, 1 H), 5.67 (d, J = 8.3 Hz, 1 H), 5.18 (d, J = 8.3 Hz, 1 H), 0.71 (s, 3 H), 0.68 (s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 162.5 (Cq, ¹ J F-C = 248 Hz), 162.5 (Cq, ¹ J F-C = 248 Hz), 162.3 (Cq, ¹ J F-C = 248 Hz), 162.3 (Cq, ¹ J F-C = 248 Hz), 139.3 (Cq, 4 J F-C = 3 Hz), 139.3 (Cq, 4 J F-C = 3 Hz), 138.7 (Cq, 4 J F-C =
3 Hz), 134.5 (Cq, 4 J F-C = 3 Hz), 130.7 (CH, ³ J F-C = 8 Hz), 130.0 (CH, ³ J F-C = 8 Hz), 128.6 (CH, ³ J F-C = 8 Hz), 128.6 (CH, ³ J F-C = 8 Hz), 115.6 (CH, ² J F-C = 21 Hz), 115.4 (CH, ² J F-C = 22 Hz), 114.6 (Cq), 114.5 (CH, ² J F-C = 22 Hz), 114.3 (CH, ² J F-C = 22 Hz), 88.7 (Cq), 87.6 (Cq), 80.0 (CH), 79.5 (CH), 26.8 (CH3), 26.6 (CH3). ³¹P NMR (121 MHz, CDCl3): δ = -2.5. ¹9F NMR (282 MHz, CDCl3): δ = -112.4 (m),
-112.9 (m), -113.9 (m), -114.1 (m). IR (KBr): 3424, 2993, 2903, 2354, 2344, 1601, 1506, 1268, 1161, 1082, 937, 847, 762 cm. HR-MS (ESI): m/z calcd for C31H24F4O5P: 583.1303; found: 583.1306.

25

Synthesis of 3b (Table  [²] , entry 1); Typical procedure: A suspension of Pd2dba3 (4.6 mg, 0.005 mmol, 1.0 mol%), 6d (11.7 mg, 0.020 mmol, 4.0 mol%), K3PO4 (318 mg, 1.50 mmol), 1a (205 mg, 0.75 mmol), 2b (147 mg, 0.50 mmol) in 1,4-dioxane (2.0 mL) was stirred under N2 for 20 h at 110 ˚C. After the reaction mixture was cooled to ambient temperature, MTBE (50 mL) and H2O (50 mL) were added. The separated aqueous phase was extracted with MTBE (3 × 50 mL). The combined organic layers were washed with brine (50 mL), dried over Na2SO4 and concentrated in vacuo. The remaining residue was purified by column chromatog-raphy on silica gel (n-hexane-EtOAc, 9:1) to yield 3b (114 mg, 78%) as a white solid (mp 45.0 ˚C). ¹H NMR (300 MHz, CDCl3): δ = 8.75 (dt, J = 4.8, 1.4 Hz, 1 H), 8.48 (s, 2 H), 7.91 (s, 1 H), 7.88-7.77 (m, 2 H), 7.40-7.29 (m, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 154.1 (Cq), 150.1 (CH), 141.3 (Cq), 137.2 (CH), 132.1 (Cq, ² J F-C = 33 Hz), 126.9 (CH, ³ J F-C =
4 Hz), 123.6 (CH), 123.4 (Cq, ¹ J F-C = 273 Hz), 122.3 (CH, ³ J F-C = 4 Hz), 120.6 (CH). ¹9F NMR (282 MHz, CDCl3): δ = -62.9. IR (KBr): 3897, 2927, 1591, 1455, 1382, 1279, 1136, 897, 785, 683 cm. MS (EI): m/z (%) = 291 (100) [M+], 272 (22), 252 (10), 222 (38), 202 (12), 83 (28), 71 (34), 57 (66), 43 (64). HR-MS (EI): m/z calcd for C13H7F6N: 292.0555; found: 292.0557. The spectral data were in accordance with those reported in the literature.¹6