Abstract
The amidation of aryl iodides using Cu2 O nanoparticles is
described. It is a heterogeneous process, no leaching of the Cu2 O species
occurs, and the catalyst can be recovered and recycled without loss
of activity.
Key words
Cu2 O nanoparticles - heterogeneous catalysis - cross-coupling reaction - amide - aryl iodide
References and Notes
1a
Beletskaya IP.
Cheprakov AV.
Coord. Chem. Rev.
2004,
248:
2337
1b
Hartwig JF.
Synlett
2006,
1283
1c
Ley SV.
Thomas AW.
Angew. Chem. Int.
Ed.
2003,
42:
5400
1d
Corbet J.-P.
Mignani G.
Chem. Rev.
2006,
106:
2651
1e
Evano G.
Blanchard N.
Toumi M.
Chem. Rev.
2008,
108:
3054
1f
Kondo T.
Mitsudo T.-A.
Chem. Rev.
2000,
100:
3205
2a
Voets M.
Antes I.
Scherer C.
Muller-Vieira U.
Biemel K.
Barassin C.
Marchais-Oberwinkler S.
Hartmann RW.
J.
Med. Chem.
2005,
48:
6632
2b
Quan ML.
Lam PYS.
Han Q.
Pinto DJP.
He MY.
Li R.
Ellis CD.
Clark CG.
Teleha CA.
Sun JH.
Alexander RS.
Bai S.
Luettgen JM.
Knabb RM.
Wong PC.
Wexler RR.
J. Med. Chem.
2005,
48:
1729
2c
De Martino G.
Edler MC.
La Regina G.
Colsuccia A.
Barbera MC.
Barrow D.
Nicholson RI.
Chiosis G.
Brancale A.
Hamel E.
Artico M.
Silvestri R.
J. Med. Chem.
2006,
49:
947
2d
Kadlor SW.
Kalish VJ.
Davies JF.
Shetty BV.
Fritz JE.
Appelt K.
Burgess JA.
Campanale KM.
Chirgadze NY.
Clawson DK.
Dressman BA.
Hatch SD.
Khalil DA.
Kosa MB.
Lubbehusen PP.
Muesing MA.
Patick AK.
Reich SH.
Su KS.
Tatlock JH.
J. Med. Chem.
1997,
40:
3979
3
Goldberg I.
Ber.
Dtsch. Chem. Ges.
1906,
39:
1691
For some examples, see:
4a
Yin J.
Buchwald SL.
J. Am. Chem. Soc.
2002,
124:
6043
4b
Huang X.
Anderson
KW.
Zim D.
Jiang L.
Klapars A.
Buchwald SL.
J.
Am. Chem. Soc.
2003,
125:
6653
4c
Shen Q.
Hartwig JF.
J. Am. Chem. Soc.
2007,
129:
7734
4d
Ikawa T.
Barder TE.
Biscoe MR.
Buchwald SL.
J.
Am. Chem. Soc.
2007,
129:
13001
4e
Yin J.
Buchwald SL.
Org. Lett.
2000,
2:
1101
4f
Hartwig JF.
Kawatsura M.
Hauck SI.
Shaughnessy KH.
Alcazar-Roman LM.
J.
Org. Chem.
1999,
64:
5575
4g
Ghosh A.
Sieser JE.
Riou M.
Cai W.
Rivera-Ruiz L.
Org.
Lett.
2003,
5:
2207
4h
Manley PJ.
Bilodeau MT.
Org.
Lett.
2004,
6:
2433
4i
Shen Q.
Shekhar S.
Stambuli JP.
Hartwig JF.
Angew. Chem. Int.
Ed.
2005,
44:
1371
4j
Klapars A.
Campos KR.
Chen C.-Y.
Volante RP.
Org. Lett.
2005,
7:
1185
For some examples, see:
5a
Klapars A.
Antilla JC.
Huang X.
Buchwald SL.
J. Am. Chem. Soc.
2001,
123:
7727
5b
Strieter ER.
Blackmond DG.
Buchwald SL.
J. Am. Chem. Soc.
2005,
127:
4120
5c
Pan X.
Cai Q.
Ma D.
Org.
Lett.
2004,
6:
1809
5d
Klapars A.
Huang X.
Buchwald SL.
J.
Am. Chem. Soc.
2002,
124:
7421
5e
Mallesham B.
Rajesh BM.
Reddy PR.
Srinivas D.
Trehan S.
Org. Lett.
2003,
5:
963
5f
Hosseinzadeh R.
Tajbakhsh M.
Mohadjerani M.
Mehdinejad H.
Synlett
2004,
1517
5g
Guo X.
Rao H.
Fu H.
Jiang Y.
Zhao Y.
Adv. Synth.
Catal.
2006,
348:
2197
5h
Lv X.
Bao W.
J. Org. Chem.
2007,
72:
3863
For some examples, see:
6a
Deng W.
Wang Y.-F.
Zou Y.
Liu L.
Guo Q.-X.
Tetrahedron
Lett.
2004,
45:
2311
6b
Chen Y.-J.
Chen H.-H.
Org. Lett.
2006,
8:
5609
6c
Soares do Rêgo Barros O.
Nogueira CW.
Stangherlin EC.
Menezes PH.
Zeni G.
J. Org. Chem.
2006,
71:
1552
6d
Cristau H.-J.
Cellier PP.
Spindler
J.-F.
Taillefer M.
Chem. Eur. J.
2004,
10:
5607
6e
Chandrasekhar S.
Sultana SS.
Yaragorla SR.
Reddy NR.
Synthesis
2006,
839
6f
Moriwaki K.
Satoh K.
Takada M.
Ishino Y.
Ohno T.
Tetrahedron
Lett.
2005,
46:
7559
6g
Strieter ER.
Bhayana B.
Buchwald SL.
J. Am. Chem. Soc.
2009,
131:
78
6h
Mino T.
Harada Y.
Shindo H.
Sakamoto M.
Fujita T.
Synlett
2008,
614
6i
Zhu L.
Cheng L.
Zhang Y.
Xie R.
You J.
J. Org. Chem.
2007,
72:
2737
For some examples, see:
7a
Rout L.
Sen TK.
Punniyamurthy T.
Angew.
Chem. Int. Ed.
2007,
46:
5583
7b
Rout L.
Jammi S.
Punniyamurthy T.
Org.
Lett.
2007,
9:
3397
7c
Jammi S.
Sakthivel S.
Rout L.
Mukherjee T.
Mandal S.
Mitra R.
Saha P.
Punniyamurthy T.
J. Org. Chem.
2009,
74:
1971
7d
Zhang J.
Zhang Z.
Wang Y.
Zheng X.
Wang Z.
Eur. J. Org.
Chem.
2008,
5112
7e
Li J.-H.
Tang B.-X.
Tao L.-M.
Xie Y.-X.
Liang Y.
Zhang M.-B.
J. Org. Chem.
2006,
71:
7488
7f
Tang B.-X.
Wang F.
Li J.-H.
Xie Y.-X.
Zhang
M.-B.
J.
Org. Chem.
2007,
72:
6294
8a
Wu W.-T.
Wang Y.
Shi L.
Pang W.
Zhu Q.
Xu G.
Lu F.
J.
Phys. Chem. B
2006,
110:
14702
8b
Gou L.
Murphy CJ.
Nano Lett.
2003,
3:
231
9a
Liu L.
Zhang Y.
Wang Y.
J. Org. Chem.
2005,
70:
6122
9b
Reed NN.
Dickerson TJ.
Boldt GE.
Janda KD.
J.
Org. Chem.
2005,
70:
1728
9c
Chandrasekhar S.
Narsihmulu Ch.
Sultana SS.
Reddy NR.
Org. Lett.
2002,
4:
4399
9d
Svennebring A.
Garg N.
Nilsson P.
Hallberg A.
Larhed M.
J. Org. Chem.
2005,
70:
4720
9e
Wang L.
Zhang Y.
Liu L.
Wang Y.
J. Org. Chem.
2006,
71:
1284
10
General Procedure
for Amidation of Aryl Iodides
Aryl iodide (1 mmol),
amide (1.2 mmol), and CuI (10 mol%) were stirred at 120 ˚C
in the presence of KOH (1 mmol) in PEG4000 (1 g) under
N2 atmosphere. Progress of the reaction was monitored
by TLC. After completion, the reaction flask was cooled to r.t.,
and the reaction mixture was treated with EtOAc (10 mL). The resulting
solution was washed with H2 O (3 × 2
mL). Drying (Na2 SO4 ) and evaporation of the solvent
gave a residue that was purified on a short pad of silica gel using
hexane and EtOAc as eluent. All the isolated products were characterized
by IR, ¹ H NMR, and ¹³ C
NMR spectroscopy, and elemental analysis.
Recyclability
Experiment
1-Iodo-4-methylbenzene (5 mmol), benzamide
(6 mmol), and CuI (10 mol%) were stirred at 120 ˚C
in the presence of KOH (7.5 mmol) in PEG4000 (5 g) under
N2 atmosphere. After the reaction, the reaction material
was treated with EtOAc (10 mL) and H2 O (5 mL). The aqueous
layer having the Cu2 O nanoparticles were centrifuged,
and the precipitate was washed with deionized H2 O (3 ¥ 2
mL) and acetone (3 ¥ 2 mL). After drying
in vacuum, the Cu2 O nanoparticles were reused for the
fresh reaction of benzamide with 1-iodo-4-methylbenzene.