Subscribe to RSS
DOI: 10.1055/s-0029-1218545
Chiral Aziridination of Olefins Using a Chiral Sulfinamide as the Nitrogen Source
Publication History
Publication Date:
02 December 2009 (online)
Abstract
Chiral aziridination of cyclic α-bromoenones is achieved by the use of the lithium salt of (S S)-(+)-p-toluenesulfinamide, which leads to products with diastereomeric excesses in the range of 30-65% using a simple protocol. A key factor associated with chiral induction is the incorporation of the reacting olefin in a cycle, indicating the importance of conformational restriction in the reacting double bond.
Key words
aminations - chirality - cyclizations - enones - Michael additions
-
1a
Aziridines and Epoxides in Organic Synthesis
Yudin AK. Wiley-VCH; Weinheim: 2006. -
1b
Jacobsen EN. Comprehensive Asymmetric Catalysis Vol. 2:Jacobsen EN.Pfaltz A.Yamamoto H. Springer; Berlin: 1999. p.607 -
1c
Pearson WH.Lian BW.Bergmeier SC. In Comprehensive Heterocyclic Chemistry II Vol. 1A:Padwa A. Pergamon; Oxford: 1996. p.1 -
1d
Rai KML.Hassner A. In Comprehensive Heterocyclic Chemistry II Vol. 1A:Padwa A. Pergamon; Oxford: 1996. p.6196 - 2 For useful biological activities
of aziridines, see:
Yadav LD.Rai A.Rai VK.Awasthi C. Tetrahedron Lett. 2008, 49: 687 ; and references therein - For the synthesis of oseltamivir, the anti-influenza neuraminidase inhibitor, using an aziridine intermediate, see:
-
3a
Nie L.-D.Shi X.-X.Ko KH.Lu W.-D. J. Org. Chem. 2009, 74: 3970 -
3b
Yamatsugu K.Yin L.Kamijo S.Kimura Y.Kanai M.Shibasaki M. Angew. Chem. Int. Ed. 2009, 48: 1070 -
3c
Satoh N.Akiba T.Yokoshima S.Fukuyama T. Tetrahedron 2009, 65: 3239 -
3d
Trost BM.Zhang T. Angew. Chem. Int. Ed. 2008, 47: 3759 -
3e
Shibasaki M.Kanai M. Eur. J. Org. Chem. 2008, 1839 -
3f
Yeung Y.-Y.Hong S.Corey EJ. J. Am. Chem. Soc. 2006, 128: 6310 -
3g
Fukuta Y.Mita T.Fukuda N.Kanai M.Shibasaki M. J. Am. Chem. Soc. 2006, 128: 6312 - For azinomycins, see:
-
4a
Hodgkinson TJ.Shipman M. Tetrahedron 2001, 57: 4467 -
4b
Coleman RS.Kong JS.Richardson TE. J. Am. Chem. Soc. 1999, 121: 9088 -
4c
Coleman RS.Li J.Navarro A. Angew. Chem. Int. Ed. 2001, 40: 1736 - 5
Remers WA. In The Chemistry of Antitumor Antibiotics Vol. 1: Wiley-Interscience; New York: 1979. p.242 - 5b
Kasai M.Kono M. Synlett 1992, 778 -
6a
Taylor AM.Schreiber SL. Tetrahedron Lett. 2009, 50: 3230 -
6b
Chan JWW.Ton TMU.Zhang Z.Xu Y.Chan PWH. Tetrahedron Lett. 2009, 50: 161 -
6c
Singh GS.D’hooghe M.De Kimpe N. Chem. Rev. 2007, 107: 2080 -
6d
Muller P.Fruit C. Chem. Rev. 2003, 2905 -
6e
Sweeney JB. Chem. Soc. Rev. 2002, 31: 247 -
6f
Ibuka I. Chem. Soc. Rev. 1998, 27: 145 -
6g
Osborn HMI.Sweeney JB. Tetrahedron: Asymmetry 1997, 8: 1693 -
6h
Li A.-H.Dai L.-X.Aggarwal VK. Chem. Rev. 1997, 97: 2341 -
6i
Tanner D. Angew. Chem., Int. Ed. Engl. 1994, 33: 599 -
7a
Minakata S.Morino Y.Oderaotoshi Y.Komatsu M. Chem. Commun. 2007, 3337 -
7b
D’hooghe M.Boelens M.Piqueur J.Kimpe N. Chem. Commun. 2007, 1927 -
8a
Fioravanti S.Morea S.Morreale A.Pellacani L.Tardella PA. Tetrahedron 2009, 65: 484 -
8b
Chigboh K.Morton D.Nadin A.Stockman RA. Tetrahedron Lett. 2008, 49: 4768 -
8c
Duan P.-W.Chiu C.-C.Lee W.-D.Pan LS.Venkatesham U.Tzeng Z.-H.Chen K. Tetrahedron: Asymmetry 2008, 19: 682 -
8d
Fernandez I.Valdivia V.Gori B.Alcudia F.Alvarez E.Khiar N. Org. Lett. 2005, 7: 1307 -
8e
Ulukanli S.Karabuga S.Celik A.Kazaz C. Tetrahedron Lett. 2005, 46: 197 -
8f
Chenna PHD.Peillard FR.Dauban P.Dodd RH. Org. Lett. 2004, 6: 4503 -
8g
Cavallo AS.Roje M.Welter R.Sinjic V. J. Org. Chem. 2004, 69: 1409 -
8h
Redlich M.Hossain MM. Tetrahedron Lett. 2004, 45: 8987 -
8i
Calhorda MJ.Vaz PD. Chemtracts: Inorg. Chem. 2004, 17: 396 -
8j
Barros MT.Maycock CD.Ventura MR. Tetrahedron Lett. 2002, 43: 4329 -
8k
Gillespie KM.Sanders CJ.Shaughnessy PO.Westmoreland I.Thickitt CP.Scott P. J. Org. Chem. 2002, 67: 3450 -
8l
Nishimura M.Minakata S.Takahashi T.Oderaotoshi Y.Komatsu M. J. Org. Chem. 2002, 67: 2101 -
8m
Aggarwal VK.Alonso E.Ferrara M.Spey SE. J. Org. Chem. 2002, 67: 2335 -
8n
Wei H.-X.Kim SH.Li G. Tetrahedron 2001, 57: 8401 - 9
Pereira MM.Santos PPO.Reis LV.Lobo AM.Prabhakar S. J. Chem. Soc., Chem. Commun. 1993, 38 -
10a
Antunes MM.Bonifácio VDB.Nascimento CC.Lobo AM.Branco PS.Prabhakar S. Tetrahedron 2007, 63: 7009 -
10b
Antunes AMM.Marto SJ.Branco PS.Prabhakar S.Lobo AM. Chem. Commun. 2001, 405 -
11a
Aires-de-Sousa J.Prabhakar S.Lobo AM.Rosa AM.Gomes MJS.Corvo MC.Williams DJ.White AJP. Tetrahedron: Asymmetry 2002, 12: 3349 -
11b
Aires-de-Sousa J.Lobo AM.Prabhakar S. Tetrahedron Lett. 1996, 37: 3183 - 12
Murugan E.Siva A. Synthesis 2005, 2022 -
13a
Davis FA.Wu Y.Yan H.McCoull W.Prasad KR. J. Org. Chem. 2003, 68: 2410 -
13b
Davis FA.Zhou P.Reddy GV. J. Org. Chem. 1994, 59: 3243 - 14 The lithium salt of (S
S)-(+)-1 was prepared as in:
Wenschuh V.Fritzsche B. J. Prakt. Chem. 1970, 312: 129 ; its configuration stability in the chiral sulfur was ascertained by recovering (S S)-(+)-1 with the same specific rotation of +85.6 (c 0.95, CH3Cl) from the salt - All α-bromo(iodo)olefins 2 were obtained by dihalogenation of the double bond followed by base-catalyzed elimination of the β-halogen while reforming the olefin:
-
16a Compound 2a:
Kowalski CJ.Weber AE.Fields KW. J. Org. Chem. 1982, 47: 5088 -
16b Compounds 2b,c:
Bordwell FG.Wellman KM. J. Org. Chem. 1963, 28: 2544 -
16c Compound 2d:
Smith AB.Branca SJ.Guaciaro MA.Wovkulich PM.Korn A. Org. Synth., Coll. Vol. VII 1990, 271 -
16d Compound 2e:
Johnson CR.Adams JP.Braun MP.Senanayake CBW.Wovkulich PM.Uskokovic MR. Tetrahedron Lett. 1992, 7: 917 -
16e Compound 2f:
Wakui T.Otsuji Y.Imoto E. Bull. Chem. Soc. Jpn. 1974, 2267 -
16f Compound 2g:
Amice P.Blanco L.Conia JM. Synthesis 1976, 196 -
16g Compound 2h:
Crossland I.Bock K.Norrestam R. Acta Chem. Scand., Ser. B 1985, 39: 7 -
16h
Nield CH. J. Am. Chem. Soc. 1945, 67: 1145 -
16i Compound 2i:
Carlier P.Gelas-Mialhe Y.Vessiere R. Can. J. Chem. 1977, 55: 3190 - 18 For stabilization involving lithium
chelation in an eight-membered ring, see:
Davis FA.Reddy RT.Reddy RE. J. Org. Chem. 1992, 57: 6387 - 19
Molander GA.Stengel PJ. Tetrahedron 1997, 53: 8887 - 20
Parker D. Chem. Rev. 1991, 91: 1441
References and Notes
This compound is commercially available from Sigma-Aldrich Co (http://www.sigmaaldrich.com).
17CCDC 741870 contains the crystallographic data which can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam. ac.uk, or by contacting CCDC, UK; fax: +44 (1223)336033.
21Full coordinates and other information about the calculations can be found via the following digital repository entries: 10042/to-2308, 10042/to-23010, 10042/to-2311, 10042/to-2312, 10042/to-2314 and 10042/to-2315, resolved as e.g. http://dx.doi.org/10042/to-2308. An interactive version of this figure can be viewed via the HTML version of this article.
22
Typical Experimental
Procedure for Aziridination
To a dry THF solution
of 2-bromocyclohex-2-en-1-one (2a, 0.286
mmol), under nitrogen atmosphere and protected from light at -78 ˚C,
was added the lithium salt of chiral sulfinamide 1 (0.858
mmol) and the reaction allowed to reach r.t. After 30 min the solvent
was removed under reduced pressure and the residue dissolved in
EtOAc, washed with aq NH4Cl (10%), and after
drying and solvent removal, the remaining residue was purified via
silica gel PTLC (EtOAc-n-hexane,
1:1) to afford a mixture of the title aziridines 3Aa (major)/3Ba (minor); yield 62%. Separation of
both diastereomers was achieved by 2 × PTLC
of the mixture.
Compound 3Aa(major):
mp 70-71 ˚C (EtOAc-n-hexane); [α]D
²³ +64.6
(c 0.99, CHCl3).
Compound 3Ba(minor): mp 90-91 ˚C
(EtOAc-n-hexane); [α]D
²³ +89.4
(c 1.44, CHCl3). ¹H
NMR (400 MHz, CDCl3; 3Aa/3Ba = 77:23): δ = 7.60
(2 H, d, J = 8.2
Hz, minor), 7.55 (2 H, d, J = 8.2
Hz, major), 3.23 (1 H, d, J = 6.3
Hz, minor), 3.13 (1 H, d, J = 6.3
Hz, major), 3.06 (1 H, d, J = 6.3
Hz, major), 2.94 (1 H, d, J = 6.3
Hz, minor). MS (CI): m/z (%) = 249
(100) [M+]. Anal. Calcd for
C13H15NO2S: C, 62.62; H, 6.06;
N, 5.62. Found: C, 62.31; H, 6.34; N, 5.74.
Compound 3b: oil. ¹H NMR (400
MHz, CDCl3): δ = 7.59 (2 H, d, J = 8.1 Hz,
minor), 7.55 (2 H, d, J = 8.1
Hz, major), 3.08 (1 H, d, J = 6.3
Hz, major), 2.94 (1 H, d, J = 6.4
Hz, minor), 2.85 (1 H, d, J = 6.4
Hz, minor), 2.77 (1 H, d, J = 6.3 Hz,
major). HRMS: m/z calcd for
C15H19NO2S: 277.11365; found: 277.11344.
Anal. Calcd for C15H19NO2S: C,
64.95; H, 6.90; N, 5.05. Found: C, 65.27; H, 7.16; N, 4.95.
Compound 3c: mp 64-65 ˚C
(EtOAc-n-hexane). ¹H
NMR (400 MHz, CDCl3): δ = 3.79 (2 H,
d, J = 5.4
Hz, minor), 3.64 (1 H, d, J = 5.6
Hz, major), 3.41 (1 H, d, J = 6.2
Hz, major), 3.30 (1 H, d, J = 6.2
Hz, minor). MS (EI): m/z (%) = (1.1) 402 [M + 1]+.
Anal. Calcd for C25H23NO2S: C,
74.78; H, 5.77; N, 3.49. Found: C, 75.16; H, 5.74; N, 3.37.
Compound 3d (major): mp 97-98 ˚C
(Et2O-n-hexane); [α]D
²³ +22.0
(c 0.90, CHCl3).
Compound 3d (minor): mp 105-106 ˚C
(Et2O-n-hexane); [α]D
²³ +12.4
(c 2.03, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 7.62 (2 H,
d, J = 8.2
Hz, minor), 7.54 (2 H, d, J = 8.2
Hz, major), 3.56 (1 H, m, minor), 3.53 (1 H, m, major), 3.11 (1 H,
d, J = 4.3
Hz, major), 3.08 (1 H, d, J = 4.3
Hz, minor). HRMS-FAB: m/z calcd
for C12H14NO2S: 236.074526; found:
236.075172.
Compound 3f: oil. ¹H
NMR (400 MHz, CDCl3): δ = 7.60 (2 H,
d, J = 7.8
Hz, minor), 7.54 (2 H, d, J = 7.8
Hz, major), 3.23 (1 H, d, J = 4.4
Hz, minor), 3.21 (1 H, d, J = 4.4
Hz, major), 3.13 (1 H, d, J = 4.4
Hz, major), 3.10 (1 H, d, J = 4.4 Hz,
minor). MS (FI): m/z (%) =(100)
263 [M+]. Anal. Calcd for
C14H17NO2S: C, 63.85; H, 6.51;
N, 5.32. Found: C, 62.95; H, 6.81; N, 5.17.
Compound 3g: mp 92-93 ˚C
(Et2O-n-pentane). ¹H
NMR (400 MHz, CDCl3): δ = 7.61 (2 H,
d, J = 8.1
Hz, minor), 7.56 (2 H, d, J = 8.1
Hz, major), 3.13 (1 H, J = 7.7,
1.5 Hz, major), 3.06 (1 H, m, minor), 2.97 (1 H, dd, J = 7.7, 4.6
Hz, major), 2.80 (1 H, m, minor). MS (EI): m/z (%) =(18)
263 [M+]. Anal. Calcd for
C14H17NO2S: C, 63.85; H, 6.51;
N, 5.32. Found: C, 62.62; H, 6.72; N, 5.29.
Compound 3h: diasteriomeric mixture (1:1), mp 69-71 ˚C, 77-80 ˚C
(EtOAc). ¹H NMR (400 MHz, CDCl3): δ = 2.81
(1
H, d, J = 4.1
Hz), 2.79 (1 H, d, J = 7.3
Hz), 2.71 (1 H, d, J = 6.9
Hz), 2.24 (1 H, d, J = 3.7
Hz). HRMS (EI): m/z calcd for
C16H15NO2S: 285.08235; found: 285.083598.
Anal. Calcd for C16H15NO2S: C,
67.34; H, 5.30; N, 4.91. Found: C, 67.34; H, 5.30; N, 4.91.
Compounds 3i: 3Ai: mp 103-105 ˚C
(EtOAc); [α]D
²³ -15.1 (c 3.30, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 3.91 (1 H, dd, J = 6.5, 3.3
Hz), 2.89 (1 H, d, J = 3.3
Hz), 2.66 (1 H, d, J = 6.5
Hz). Anal. Calcd for C15H15NO3S2:
C, 56.05; H, 4.70; N, 4.36. Found: C, 55.87; H, 4.76; N, 4.38. 3Bi: mp 120-121 ˚C
(EtOAc); [α]D
²³ +7.4
(c 2.04, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 3.70 (1 H,
dd, J = 6.3,
3.2 Hz), 2.75 (1 H, d, J = 6.3
Hz), 2.43 (1 H, br d); the attribution to 3Ai and 3Bi may be reversed. HRMS (EI): m/z calcd for C15H15NO3S2: 321.04933;
found: 321.04958.
Oxidation of 3Aa/3Ba
To
a solution of 3Aa/3Ba (0.2
mmol) was added MCPBA (0.4 mmol), and after 18 h at r.t. the solvent
was removed and the enantiomeric mixture of 4Aa/4Ba isolated (yield 99%); ee 53% from ¹H
NMR (400 MHz, CDCl3): δ = 3.45 (1 H,
H2) split by addition of Eu(hfc)3.