Synthesis 2010(4): 651-660  
DOI: 10.1055/s-0029-1218587
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

A Mild, Efficient Synthesis of gem-Difluorodihydrouracils

Francesca Olimpieria, Santos Fusterob, Alessandro Volonterio*,a, Matteo Zanda*,c,d
a Dipartimento di Chimica, Materiali ed Ingegneria Chimica ‘G. Natta’ del Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
Fax: +39(02)23993080; e-Mail: alessandro.volonterio@polimi.it;
b Departamento de Quimica Organica, Universidad de Valencia, 46100 Burjassot, Spain
c Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK
d C.N.R. - I.C.R.M., via Mancinelli 7, 20131 Milano, Italy
Further Information

Publication History

Received 19 October 2009
Publication Date:
07 December 2009 (online)

Abstract

Carbodiimides react effectively with β-aryl/alkyl-β-hydroxy-α,α-difluorocarboxylic acids to afford a vast array of fully substituted gem-difluorodihydrouracils through a two step reaction sequence. In the first step, condensation between the two reactants leads in most cases to the formation of a mixture of the desired dihydrouracils and N-acylurea co-products. However, the latter could be easily recovered and efficiently converted into the target compounds. The sequence works well in very mild conditions (CH2Cl2, 20 ˚C) and the reaction resulted to be completely regioselective when asymmetric carbodiimides were used. When the N-acylurea derivatives are not sufficiently stable for isolation, the process could be done in a one-pot fashion leading to the direct formation of the desired dihydrouracils, although in lower yields.

    References

  • 1 For a recent issue of Chem. Rev. completely devoted to heterocycles see: Chem. Rev.  2004,  104:  2125-2812  
  • 2a Holley RW. Apgar J. Everett GA. Madison JT. Marquisee M. Merril SH. Penswick JR. Zamir A. Science  1965,  147:  1462 
  • 2b Wu S. Janusz JM. Sheffer JB. Tetrahedron Lett.  2000,  41:  1159 ; and references cited therein
  • 2c Wu S. Janusz JM. Tetrahedron Lett.  2000,  41:  1165 
  • 2d Steinberg S. Misch A. Sprinzl M. Nucl. Acids Res.  1993,  21:  3011 
  • 2e Stuart JW. Basti MM. Smith WS. Forrest B. Guenther R. Sierzputowska-Gracz H. Nawrot B. Malkiewicz A. Agris PF. Nucleosides Nucleotides  1996,  15:  1009 ; and references cited therein
  • 2f Temperilli A. Ruggieri D. Salvati P. Eur. J. Med. Chem.  1988,  23:  77 
  • 2g Skaric V. Matulic-Adamic J. Helv. Chim. Acta  1983,  66:  687 
  • 3a Dondoni A. Massi A. Sabbatini S. Tetrahedron Lett.  2001,  42:  4495 
  • 3b Sano H. Mio S. Kitagawa J. Sugai S. Tetrahedron: Asymmetry  1994,  5:  2233 
  • 4a Kondo Y. Witkop B. J. Am. Chem. Soc.  1968,  90:  764 
  • 4b Kunieda T. Witkop B. J. Am. Chem. Soc.  1971,  93:  3478 
  • 4c Cerutti P. Kondo Y. Landis WR. Witkop B. J. Am. Chem. Soc.  1968,  90:  771 
  • 4d Kautz J. Schnackerz KD. Eur. J. Biochem.  1989,  181:  431 
  • 4e Jahnke K. Podschun B. Schnackerz KD. Kautz J. Cook PF. Biochemistry  1993,  32:  5160 
  • 4f Sander EG. J. Am. Chem. Soc.  1969,  91:  3629 
  • 5a Dietrich RF. Sakurai T. Kenyon GL. J. Org. Chem.  1979,  44:  1894 
  • 5b Rachina V. Blagoeva I. Synthesis  1982,  967 
  • 6 Zee-Cheng K.-Y. Robins RK. Cheng CC. J. Org. Chem.  1961,  26:  1877 
  • 7 Schlögl K. Monatsh. Chem.  1958,  89:  61 
  • 8 Kondo Y. Witkop B. J. Am. Chem. Soc.  1969,  91:  5264 
  • 9 Boon WR. Carrington HC. Greenhalgh N. Vasey CH. J. Chem. Soc.  1954,  3263 ; and references cited therein
  • 10 Khurana J. Kukreja G. Bansal G. J. Chem. Soc., Perkin Trans. 1  2002,  2520 
  • 11a Hilgetag G. Martini A. Weygand/Hilgetag Preparative Organic Chemistry   Wiley; New York: 1972.  p.493 
  • 11b For a recent improvement of this reaction by microwave irradiation, see: Devi I. Bhuyan PJ. Tetrahedron Lett.  2005,  46:  5727 
  • 12a Hiyama T. Organofluorine Compounds   Springer-Verlag; Berlin: 2000. 
  • 12b Fluorine in Bioorganic Chemistry   Welch JT. Eswarakrishnan S. Wiley; New York: 1991. 
  • 12c Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology   Wiley; New York: 2009. 
  • 13 For a review on the synthesis of gem-difluoromethylene compounds, see: Tozer MJ. Herpin TF. Tetrahedron  1996,  52:  8619 
  • 14a Chambers RD. Jaouhari R. O’Hagan D. Tetrahedron  1989,  45:  5101 
  • 14b Takahashi LH. Radhakrisshnan R. Rosenfield RE. Meyer EF. Trainor DA. J. Am. Chem. Soc.  1989,  111:  3368 
  • 14c Witkowski S., Rao Y. K., Premchandran R. H., Halushka P. V., Fried J.; J. Am. Chem. Soc.; 1992, 114: 8464
  • 15 Fustero S. Sanchez-Rossello M. Jimenez D. Sanz-Cervera JF. del Pozo C. Aceña JL. J. Org. Chem.  2006,  71:  2706 
  • 16 Schuler M. Silva F. Bobbio C. Tessier A. Gouverneur V. Angew. Chem. Int. Ed.  2008,  47:  7927 
  • 17a Fustero S. Fernandez B. Bello P. del Pozo C. Arimitsu S. Hammond GB. Org. Lett.  2007,  9:  4251 
  • 17b Boyer N. Gloanec P. De Nanteuil G. Jubault P. Quirion JC. Tetrahedron  2007,  63:  12352 
  • 18 Schuler M. Monney A. Governeur V. Synlett  2009,  1733 
  • 19a Volonterio A. Zanda M. Tetrahedron Lett.  2003,  44:  8549 
  • 19b Volonterio A. Zanda M. Lett. Org. Chem.  2005,  2:  44 
  • 19c Volonterio A. Ramirez de Arellano C. Zanda M. J. Org. Chem.  2005,  70:  2161 
  • 19d Volonterio A. Zanda M. Org. Lett.  2007,  9:  841 
  • 19e Volonterio A. Zanda M. J. Org. Chem.  2008,  73:  7486 
  • 19f Olimpieri F. Volonterio A. Zanda M. Synlett  2008,  3016 
  • For a study on the mechanism and kinetics of reaction between carbodiimides and carboxylic acids, see:
  • 20a Klausner YS. Bodansky M. Synthesis  1972,  453 
  • 20b Rebek J. Fitler D. J. Am. Chem. Soc.  1973,  95:  4052 
  • 22 Richard JP. Amyes TI. Bei L. Stubblefield V. J. Am. Chem. Soc.  1990,  112:  9513 
  • 24 Recently an organocatalytic asymmetric alkylation with carbocation intermediates formed by dehydration of protonated alcohols has been developed: Cozzi PG. Benfatti F. Zoli L. Angew. Chem. Int. Ed.  2009,  48:  1313 
  • 25 Otaka A. Watanabe H. Mitsuyama E. Yukimasa A. Tamamura H. Fujii N. Tetrahedron Lett.  2001,  42:  285 
21

It is worth nothing that NAU derivatives are stable under the reaction condition for days and did not interconvert into the corresponding DHUs.

23

The hypothesis that DHU derivatives are directly formed via a carbocation intermediate, rather than via intramolecular nucleophilic substitution, is supported by the following experiment. Conversion of the hydroxy group of compound 11 into a good leaving group, such as a mesylate, followed by ester hydrolysis, and reacting the resulting acid 12 with carbodiimide 4b afforded the NAU derivative 13 as the only product (Scheme  [7] ) (no traces of the DHU derivative were detected by ¹H NMR spectroscopy).

Scheme 7