Abstract
Carbodiimides react effectively with β-aryl/alkyl-β-hydroxy-α,α-difluorocarboxylic
acids to afford a vast array of fully substituted gem -difluorodihydrouracils
through a two step reaction sequence. In the first step, condensation
between the two reactants leads in most cases to the formation of
a mixture of the desired dihydrouracils and N -acylurea
co-products. However, the latter could be easily recovered and efficiently
converted into the target compounds. The sequence works well in
very mild conditions (CH2 Cl2 , 20 ˚C)
and the reaction resulted to be completely regioselective when asymmetric
carbodiimides were used. When the N -acylurea derivatives
are not sufficiently stable for isolation, the process could be
done in a one-pot fashion leading to the direct formation of the desired
dihydrouracils, although in lower yields.
Key words
N-heterocycles - fluorine - dihydrouracils - carbodiimide - domino reaction -
N -acylureas
References
<A NAME="RZ21709SS-1">1 </A> For a recent issue of Chem. Rev . completely devoted to heterocycles
see: Chem. Rev.
2004,
104:
2125-2812
<A NAME="RZ21709SS-2A">2a </A>
Holley RW.
Apgar J.
Everett GA.
Madison JT.
Marquisee M.
Merril SH.
Penswick JR.
Zamir A.
Science
1965,
147:
1462
<A NAME="RZ21709SS-2B">2b </A>
Wu S.
Janusz JM.
Sheffer JB.
Tetrahedron Lett.
2000,
41:
1159 ; and references cited therein
<A NAME="RZ21709SS-2C">2c </A>
Wu S.
Janusz JM.
Tetrahedron Lett.
2000,
41:
1165
<A NAME="RZ21709SS-2D">2d </A>
Steinberg S.
Misch A.
Sprinzl M.
Nucl.
Acids Res.
1993,
21:
3011
<A NAME="RZ21709SS-2E">2e </A>
Stuart JW.
Basti MM.
Smith WS.
Forrest B.
Guenther R.
Sierzputowska-Gracz H.
Nawrot B.
Malkiewicz A.
Agris PF.
Nucleosides Nucleotides
1996,
15:
1009 ; and references cited therein
<A NAME="RZ21709SS-2F">2f </A>
Temperilli A.
Ruggieri D.
Salvati P.
Eur.
J. Med. Chem.
1988,
23:
77
<A NAME="RZ21709SS-2G">2g </A>
Skaric V.
Matulic-Adamic J.
Helv. Chim. Acta
1983,
66:
687
<A NAME="RZ21709SS-3A">3a </A>
Dondoni A.
Massi A.
Sabbatini S.
Tetrahedron Lett.
2001,
42:
4495
<A NAME="RZ21709SS-3B">3b </A>
Sano H.
Mio S.
Kitagawa J.
Sugai S.
Tetrahedron: Asymmetry
1994,
5:
2233
<A NAME="RZ21709SS-4A">4a </A>
Kondo Y.
Witkop B.
J.
Am. Chem. Soc.
1968,
90:
764
<A NAME="RZ21709SS-4B">4b </A>
Kunieda T.
Witkop B.
J. Am. Chem. Soc.
1971,
93:
3478
<A NAME="RZ21709SS-4C">4c </A>
Cerutti P.
Kondo Y.
Landis WR.
Witkop B.
J. Am. Chem. Soc.
1968,
90:
771
<A NAME="RZ21709SS-4D">4d </A>
Kautz J.
Schnackerz KD.
Eur. J. Biochem.
1989,
181:
431
<A NAME="RZ21709SS-4E">4e </A>
Jahnke K.
Podschun B.
Schnackerz KD.
Kautz J.
Cook PF.
Biochemistry
1993,
32:
5160
<A NAME="RZ21709SS-4F">4f </A>
Sander EG.
J. Am. Chem. Soc.
1969,
91:
3629
<A NAME="RZ21709SS-5A">5a </A>
Dietrich RF.
Sakurai T.
Kenyon GL.
J. Org. Chem.
1979,
44:
1894
<A NAME="RZ21709SS-5B">5b </A>
Rachina V.
Blagoeva I.
Synthesis
1982,
967
<A NAME="RZ21709SS-6">6 </A>
Zee-Cheng K.-Y.
Robins RK.
Cheng CC.
J. Org. Chem.
1961,
26:
1877
<A NAME="RZ21709SS-7">7 </A>
Schlögl K.
Monatsh.
Chem.
1958,
89:
61
<A NAME="RZ21709SS-8">8 </A>
Kondo Y.
Witkop B.
J. Am. Chem. Soc.
1969,
91:
5264
<A NAME="RZ21709SS-9">9 </A>
Boon WR.
Carrington HC.
Greenhalgh N.
Vasey CH.
J. Chem. Soc.
1954,
3263 ; and references cited therein
<A NAME="RZ21709SS-10">10 </A>
Khurana J.
Kukreja G.
Bansal G.
J.
Chem. Soc., Perkin Trans. 1
2002,
2520
<A NAME="RZ21709SS-11A">11a </A>
Hilgetag G.
Martini A.
Weygand/Hilgetag Preparative Organic
Chemistry
Wiley;
New York:
1972.
p.493
<A NAME="RZ21709SS-11B">11b </A> For a recent improvement
of this reaction by microwave irradiation, see:
Devi I.
Bhuyan PJ.
Tetrahedron Lett.
2005,
46:
5727
<A NAME="RZ21709SS-12A">12a </A>
Hiyama T.
Organofluorine
Compounds
Springer-Verlag;
Berlin:
2000.
<A NAME="RZ21709SS-12B">12b </A>
Fluorine
in Bioorganic Chemistry
Welch JT.
Eswarakrishnan S.
Wiley;
New
York:
1991.
<A NAME="RZ21709SS-12C">12c </A>
Ojima I.
Fluorine in Medicinal Chemistry and Chemical
Biology
Wiley;
New York:
2009.
<A NAME="RZ21709SS-13">13 </A> For a review on the synthesis of gem -difluoromethylene compounds, see:
Tozer MJ.
Herpin TF.
Tetrahedron
1996,
52:
8619
<A NAME="RZ21709SS-14A">14a </A>
Chambers RD.
Jaouhari R.
O’Hagan D.
Tetrahedron
1989,
45:
5101
<A NAME="RZ21709SS-14B">14b </A>
Takahashi LH.
Radhakrisshnan R.
Rosenfield RE.
Meyer EF.
Trainor DA.
J.
Am. Chem. Soc.
1989,
111:
3368
<A NAME="RZ21709SS-14C">14c </A> Witkowski S., Rao Y.
K., Premchandran R. H., Halushka P. V., Fried J.; J.
Am. Chem. Soc. ; 1992 , 114 : 8464
<A NAME="RZ21709SS-15">15 </A>
Fustero S.
Sanchez-Rossello M.
Jimenez D.
Sanz-Cervera JF.
del Pozo C.
Aceña JL.
J.
Org. Chem.
2006,
71:
2706
<A NAME="RZ21709SS-16">16 </A>
Schuler M.
Silva F.
Bobbio C.
Tessier A.
Gouverneur V.
Angew.
Chem. Int. Ed.
2008,
47:
7927
<A NAME="RZ21709SS-17A">17a </A>
Fustero S.
Fernandez B.
Bello P.
del Pozo C.
Arimitsu S.
Hammond GB.
Org.
Lett.
2007,
9:
4251
<A NAME="RZ21709SS-17B">17b </A>
Boyer N.
Gloanec P.
De Nanteuil G.
Jubault P.
Quirion JC.
Tetrahedron
2007,
63:
12352
<A NAME="RZ21709SS-18">18 </A>
Schuler M.
Monney A.
Governeur V.
Synlett
2009,
1733
<A NAME="RZ21709SS-19A">19a </A>
Volonterio A.
Zanda M.
Tetrahedron
Lett.
2003,
44:
8549
<A NAME="RZ21709SS-19B">19b </A>
Volonterio A.
Zanda M.
Lett. Org. Chem.
2005,
2:
44
<A NAME="RZ21709SS-19C">19c </A>
Volonterio A.
Ramirez de Arellano C.
Zanda M.
J. Org. Chem.
2005,
70:
2161
<A NAME="RZ21709SS-19D">19d </A>
Volonterio A.
Zanda M.
Org. Lett.
2007,
9:
841
<A NAME="RZ21709SS-19E">19e </A>
Volonterio A.
Zanda M.
J. Org. Chem.
2008,
73:
7486
<A NAME="RZ21709SS-19F">19f </A>
Olimpieri F.
Volonterio A.
Zanda M.
Synlett
2008,
3016
For a study on the mechanism and
kinetics of reaction between carbodiimides and carboxylic acids,
see:
<A NAME="RZ21709SS-20A">20a </A>
Klausner YS.
Bodansky M.
Synthesis
1972,
453
<A NAME="RZ21709SS-20B">20b </A>
Rebek J.
Fitler D.
J. Am. Chem. Soc.
1973,
95:
4052
<A NAME="RZ21709SS-21">21 </A>
It is worth nothing that NAU derivatives
are stable under the reaction condition for days and did not interconvert
into the corresponding DHUs.
<A NAME="RZ21709SS-22">22 </A>
Richard JP.
Amyes TI.
Bei L.
Stubblefield V.
J. Am. Chem. Soc.
1990,
112:
9513
<A NAME="RZ21709SS-23">23 </A>
The hypothesis that DHU derivatives
are directly formed via a carbocation intermediate, rather than
via intramolecular nucleophilic substitution, is supported by the
following experiment. Conversion of the hydroxy group of compound 11 into a good leaving group, such as a
mesylate, followed by ester hydrolysis, and reacting the resulting
acid 12 with carbodiimide 4b afforded
the NAU derivative 13 as the only product
(Scheme
[7 ]
) (no traces of
the DHU derivative were detected by ¹ H NMR spectroscopy).
Scheme 7
<A NAME="RZ21709SS-24">24 </A> Recently an organocatalytic asymmetric
alkylation with carbocation intermediates formed by dehydration
of protonated alcohols has been developed:
Cozzi PG.
Benfatti F.
Zoli L.
Angew. Chem. Int. Ed.
2009,
48:
1313
<A NAME="RZ21709SS-25">25 </A>
Otaka A.
Watanabe H.
Mitsuyama E.
Yukimasa A.
Tamamura H.
Fujii N.
Tetrahedron Lett.
2001,
42:
285