Subscribe to RSS
DOI: 10.1055/s-0029-1218596
Stereoselective Synthesis of Highly Substituted Annulated Dihydropyrans Based on γ-Lithiation and Homoaldol Reaction of an Enantiopure α-Silylated Vinyl Carbamate
Publication History
Publication Date:
07 December 2009 (online)
Abstract
The N,N-diisopropylcarbamate of (-)-myrtenol is converted into the corresponding [1-(trimethylsilyl)vinyl] carbamate. Its γ-lithiation by means of sec-butyllithium/TMEDA, titanation, and addition to aldehydes leads with high stereoselectivity to enantiopure anti-homoaldol products. These add, under the influence of boron trifluoride-diethyl ether complex, a second equivalent of aldehyde and form, in an intermolecular silyl-Prins reaction, the title compounds, again with essentially complete stereoselectivity. After desilylation, the reaction takes the regular course with formation of an annulated five-membered ring.
Key words
chiral allyl carbamates - vinyl carbamates - diastereoselective γ-lithiation - aldehyde addition - annulated dihydropyrans
- Reviews:
-
2a
Hoppe D. Synthesis 2009, 43 -
2b
Hoppe D.Marr F.Brüggemann M. Top. Organomet. Chem. 2003, 139 -
2c
Christoph G.Hoppe D. In The Chemistry of Organolithium CompoundsRappoport Z.Marek I. Wiley; Chichester: 2004. p.1055 -
3a
Hoppe D.Hanko R.Brönneke A.Lichtenberg F. Angew. Chem., Int. Ed. Engl. 1981, 20: 1024 ; Angew. Chem. 1981, 93, 1106 -
3b
Becker J.Grimme S.Fröhlich R.Hoppe D. Angew. Chem. Int. Ed. 2007, 46: 1645 ; Angew. Chem. 2007, 119, 1672 -
3c
Becker J.Bergander K.Fröhlich R.Hoppe D. Angew. Chem. Int. Ed. 2008, 47: 1654 ; Angew. Chem. 2008, 120, 1678 -
4a
Reetz MT. In Organometallics in Synthesis 2nd ed.:Schlosser M. Wiley-VCH; Chichester: 2002. p.817 -
4b
Weidmann B.Seebach D. Angew. Chem., Int. Ed. Engl. 1983, 22: 31 ; Angew. Chem. 1983, 95, 12 -
5a
Hoppe D.Krämer T.Freire Erdbrügger C.Egert E. Tetrahedron Lett. 1989, 30: 1233 -
5b
Ünaldi S.Özlügedik M.Fröhlich R.Hoppe D. Adv. Synth. Catal. 2005, 347: 1621 -
5c
Becker J.Fröhlich R.Kataeva O.Hoppe D. Eur. J. Org. Chem. 2007, 3349 -
5d
Becker J.Fröhlich R.Salorinne K.Hoppe D. Eur. J. Org. Chem. 2007, 3337 - 6
Becker J. Dissertation University of Münster; Germany: 2008. -
7a
Seppi M.Kalkofen R.Reupohl J.Fröhlich R.Hoppe D. Angew. Chem. Int. Ed. 2004, 43: 1423 ; Angew. Chem. 2004, 116, 1447 -
7b
Kalkofen R.Brandau S.Wibbeling B.Hoppe D. Angew. Chem. Int. Ed. 2004, 43: 6667 ; Angew. Chem. 2004, 116, 6836 -
7c
Reuber J.Fröhlich R.Hoppe D. Org. Lett. 2004, 6: 783 - 8
Würthwein E.-U.Hoppe D. J. Org. Chem. 2008, 73: 9055 - 9
Peschke B.Lüßmann J.Dyrbusch M.Hoppe D. Chem. Ber. 1992, 125: 1421 - 15 Review:
Hoffmann RW. Angew. Chem., Int. Ed. Engl. 1987, 26: 489 ; Angew. Chem. 1987, 99, 503 - 16
Kollmann S.Fröhlich R.Hoppe D. Synthesis 2007, 883 -
18a
Overman LE. Lectures in Heterocyclic Chemistry 1985, 8: 58 -
18b
Fleming I.Chow H.-F. J. Chem. Soc., Perkin Trans. 1 1984, 1815 -
18c
Hoffmann RW.Giesen V.Fuest M. Liebigs Ann. Chem. 1993, 629 -
18d
Blumenkopf T.Overman LE. Chem. Rev. 1986, 86: 857 -
18e
Markó IE.Bayston DJ. Tetrahedron 1994, 50: 7141 -
19a
Semeyn RH.Blaauw RH.Hiemstra H.Speckamp WN. J. Org. Chem. 1997, 62: 3426 -
19b
Dobbs AP.Martinović S. Tetrahedron Lett. 2002, 43: 7055 -
19c
Dobbs AP.Guesné SJ.Martinović S.Coles S.Hursthouse MB. J. Org. Chem. 2003, 68: 7880 -
19d
Lian Y.Hinkle RJ. J. Org. Chem. 2006, 71: 7071 - 20
Kofron WG.Baclawski LM. J. Org. Chem. 1976, 41: 1879 - 22 Denzo-SMN:
Otwinowski Z.Minor W. Methods Enzymol. 1997, 276: 307 - 23
Otwinowski Z.Borek D.Majewski W.Minor W. Acta Crystallogr., Sect. A 2003, 59: 228 - 24
Sheldrick GM. Acta Crystallogr., Sect. A 1990, 46: 467 - 25 SHELXL-97:
Sheldrick GM. Acta Crystallogr., Sect. A 2008, 64: 112 - 26
Keller E. SCHAKAL University of Freiburg; Germany: 1997. - 27 DIAMOND:
Bergerhoff G.Berndt M.Brandenburg K. J. Res. Natl. Inst. Stand. Technol. 1996, 101: 221
References
X-ray crystal structure analysis.
10X-ray crystal structure analysis for 12: formula C20H37NO2Si, M = 351.60, colorless crystal 0.40 × 0.10 × 0.07 mm, a = 10.6208 (3), b = 7.4155 (2), c = 14.7983 (5) Å, β = 108.749 (2)˚, V = 1103.65 (6) ų, ρcalc = 1.058 g cm-³, µ = 1.010 mm-¹, empirical absorption correction (0.688 ≤ T ≤ 0.933), Z = 2, monoclinic, space group P21 (No. 4), λ = 1.54178 Å, T = 223 K, ω and φ scans, 6133 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.60 Å-¹, 2594 independent (R int = 0.041) and 2497 observed reflections [I ≥ 2 σ(I)], 226 refined parameters, R = 0.044, wR ² = 0.123, Flack parameter 0.01 (4), max. residual electron density 0.16 (-0.16) e Å-³, hydrogen atoms calculated and refined as riding atoms.
11Formula 14 depicts the α-(S)-epimer, which is assumed to be the preliminary formed epimer by removal of the pro-S-H (from the rear face). However its configurational stability is unknown, it may be in equilibration with the α-(R)-epimer (not shown).
12X-ray crystal structure analysis for epi-18a: formula C24H45NO3Si, M = 423.70, colorless crystal 0.35 × 0.25 × 0.07 mm, a = 10.8529 (5), b = 13.0316 (6), c = 18.5002 (8) Å, V = 2616.5 (2) ų, ρcalc = 1.076 g cm-³, µ = 0.954 mm-¹, empirical absorption correction (0.731 ≤ T ≤ 0.936), Z = 4, orthorhombic, space group P212121 (No. 19), λ = 1.54178 Å, T = 223 K, ω and φ scans, 14181 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.60 Å-¹, 4588 independent (R int = 0.050) and 4348 observed reflections [I ≥ 2 σ(I)], 274 refined parameters, R = 0.044, wR ² = 0.114, Flack parameter -0.01 (3), max. residual electron density 0.21 (-0.17) e Å-³, hydrogen atoms calculated and refined as riding atoms.
13X-ray crystal structure analysis for 18a: formula C24H45NO3Si, M = 423.70, colorless crystal 0.40 × 0.15 × 0.10 mm, a = 10.9427 (4), b = 13.3514 (5), c = 18.4110 (7) Å, V = 2689.9 (2) ų, ρcalc = 1.046 g cm-³, µ = 0.928 mm-¹, empirical absorption correction (0.708 ≤ T 0.913), Z = 4, orthorhombic, space group P212121 (No. 19), λ = 1.54178 Å, T = 223 K, ω and φ scans, 14774 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.60 Å-¹, 4669 independent (R int = 0.042) and 4327 observed reflections [I ≥ 2 σ(I)], 274 refined parameters, R = 0.043, wR ² = 0.111, Flack parameter 0.01 (3), max. residual electron density 0.19 (-0.18) e Å-³, hydrogen atoms calculated and refined as riding atoms.
14A six-membered Zimmerman-Traxler transition state of an (E)-allylmetal leads to the anti-diastereomer.¹5
17X-ray crystal structure analysis for 23ac: formula C28H41NO3, M = 439.62, colorless crystal
0.25 × 0.20 × 0.15 mm, a = 9.1840
(2), b = 12.7732 (3), c = 11.7279 (5) Å, β = 102.293
(2)˚, V = 1343.67 (5) ų, ρcalc = 1.087
g cm-³, µ = 0.540
mm-¹, empirical absorption correction
(0.877 ≤ T ≤ 0.923), Z = 2, monoclinic, space group P21 (No. 4), λ = 1.54178 Å, T = 223 K, ω and φ scans,
7668 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.60 Å-¹,
4270 independent (R
int = 0.038)
and 4151 observed reflections
[I ≥ 2 σI)], 297 refined parameters, R = 0.040, wR
² = 0.112, Flack
parameter 0.1 (2), max. residual electron density 0.16 (-0.18)
e Å-³, hydrogen atoms calculated
and refined as riding atoms.
Data sets were collected with a Nonius KappaCDD diffractometer. Programs used: data collection COLLECT (Nonius B.V., 1998), data reduction Denzo-SMN,²² absorption correction Denzo²³ structure solution SHELXS-97,²4 structure refinement SHELXL-97,²5 graphics SCHAKAL²6 and DIAMOND.²7 CCDC 739288-739291 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033, E-mail: deposit@ccdc.cam.ac.uk].