Synthesis 2010(8): 1303-1310  
DOI: 10.1055/s-0029-1218677
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

A Synthetic Route to Fully Substituted Chiral Cyclopentylamine Derivatives: Precursors of Carbanucleosides

Ramprasad Ghosha, Joy Krishna Maitya, Michael G. B. Drewb, Basudeb Acharia, Sukhendu B. Mandal*a
a Chemistry Division, Indian Institute of Chemical Biology (a unit of CSIR), Jadavpur, Kolkata 700 032, India
Fax: +91(33)24735197; e-Mail: sbmandal@iicb.res.in;
b Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
Further Information

Publication History

Received 21 December 2009
Publication Date:
11 February 2010 (online)

Abstract

Removal of silyl protection from d-glucose derived substrate 6 afforded 7, which upon acetonide deprotection followed by reaction with N-benzylhydroxylamine furnished two isomeric isoxazolidinocyclopentane derivatives via spontaneous cyclization of an in situ generated nitrone. The methyl xanthate derivative of the tertiary hydroxyl group of one isomer was isolated and subjected to radical deoxygenation reaction to form epimeric products, while with the other isomer it underwent spontaneous 1,2-elimination to form a mixture of the two possible endocyclic olefins. Hydrogenolytic cleavage of the isoxazolidine rings of the purified products followed by insertion of 5-amino-4-chloropyrimidine moiety and purine ring construction smoothly afforded structurally unique carbanucleoside analogues. Various spectroscopic methods on the synthesized compounds and X-ray analysis on one important intermediate were used to assign the structures and stereochemistry of the products.

    References

  • 1a Jenkins GN. Turner NJ. Chem. Soc. Rev.  1995,  169 
  • 1b Wachtmeister J. Classon B. Samuelsson B. Kvarnstrõm I. Tetrahedron  1995,  51:  2029 
  • 2 Altona C. Sunderalingam M. J. Am. Chem. Soc.  1972,  94:  8205 
  • 3a Mandal SB. Sahabuddin Sk. Singha K. Roy A. Roy BG. Maity JK. Achari B. Proc. Indian Natl. Sci. Acad.  2005,  71A:  283 ; and references cited therein
  • 3b Crimmins MT. King BW. Zuercher WJ. Choy AL. J. Org. Chem.  2000,  65:  8499 ; and references cited therein
  • 3c Gurjar MK. Maheswar K. J. Org. Chem.  2001,  66:  7552 
  • 3d Ono M. Nishimura K. Tsubouchi H. Nagaoka Y. Tomoika K. J. Org. Chem.  2001,  66:  8199 
  • 4a Jin YH. Liu P. Wang J. Baker R. Huggins J. Chu CK. J. Org. Chem.  2003,  68:  9012 
  • 4b Seley KL. Mosley SL. Zeng F. Org. Lett.  2003,  5:  4401 
  • 4c Li F. Brogan JB. Gage JL. Zhang D. Miller MJ. J. Org. Chem.  2004,  69:  4538 
  • 5a Khan FA. Rout B. J. Org. Chem.  2007,  72:  7011 
  • 5b Arjona O. Gómez AM. López C. Plumet J. Chem. Rev.  2007,  107:  1919 
  • 6a Marcé P. Djaz Y. Matheu MI. Castillón S. Org. Lett.  2008,  10:  4735 
  • 6b Yoshimura Y. Ohta M. Imahori T. Imamichi T. Org. Lett.  2008,  10:  3449 
  • 6c Leung LMH. Gibson V. Linclau B. J. Org. Chem.  2008,  73:  9197 
  • 6d Besada P. Gonzalezmoa MJ. Teran C. Synthesis  2008,  2363 
  • 6e Quadrelli P. Piccanello A. Mella M. Corsaro A. Pistara V. Tetrahedron  2008,  64:  3541 
  • 7a Cesario C. Miller MJ. J. Org. Chem.  2009,  74:  5730 
  • 7b Jessel S. Meier C. Nucleic Acids Symp. Ser.  2008,  52:  615 
  • 8a Wang J. Jin Y. Rapp KL. Schinazi RF. Chu CK. J. Med. Chem.  2007,  50:  1828 
  • 8b Migliore MD. Zontra N. McGuigan C. Henson G. Andrei G. Resnoeck R. Balzarini J. J. Med. Chem.  2007,  50:  6485 
  • 8c Ahn H. Choi TH. De Castro K. Lee KC. Kim B. Moon BS. Hong SH. Lee JC. Chun KS. Cheon GJ. Lim SM. An GI. Rhee H. J. Med. Chem.  2007,  50:  6032 
  • 8d Kim H.-J. Sharon A. Bal C. Wang J. Allu M. Huang Z. Murray MG. Bassit L. Schinazi RF. Korba B. Chu CK. J. Med. Chem.  2009,  52:  206 
  • 8e Boyer PL. Vu BC. Ambrose Z. Julias JG. Warnecke S. Liao C. Meier C. Marquez VE. Hughes SH. J. Med. Chem.  2009,  52:  5356 
  • 9a Nicolaou KC. Dai W.-M. Angew. Chem., Int. Ed. Engl.  1991,  30:  1387 
  • 9b Pratbiel G. Bernadou J. Meunier B. Angew. Chem., Int. Ed. Engl.  1995,  34:  746 
  • 10 Kusuka T. Yamamoto H. Shibata M. Muroi M. Kishi T. Mizuno K. J. Antibiot.  1968,  21:  255 
  • 11 Yaginuma S. Muto N. Tsujino M. Sudate Y. Hayashi M. Otani M. J. Antibiot.  1981,  34:  359 
  • 12 Vince R. Hua M. J. Med. Chem.  1990,  33:  17 
  • 13 Daluge SM. Good SS. Faletto MB. Miller WH. St. Clair MH. Boone LR. Tisdale M. Parry NR. Reardon JE. Dornsife RE. Averette DR. Krenitsky TA. Antimicrob. Agents Chemother.  1997,  41:  1082 
  • 14 Katagiri N. Nomura N. Sato H. Kaneko C. Tusa K. Tsuruo T. J. Med. Chem.  1992,  35:  1882 
  • 15 Balzarini J. Baumgartner H. Bodenteich M. De Clercq E. Griengl H. J. Med. Chem.  1989,  32:  1861 
  • 16 Borthwick AD. Butt S. Biggadike K. Exall AM. Roberts SM. Youds PM. Kirk BE. Booth BR. Cameron JM. Cox SW. Marr CLP. Shill MD.
    J. Chem. Soc., Chem. Commun.  1988,  656 
  • 17a Ando O. Nakajima M. Hamano K. Itoi K. Takahasi S. Takamatsu Y. Sato A. Enokita R. Okazaki T. Haruyama H. Kinoshita T. J. Antibiot.  1993,  46:  1116 
  • 17b Wen X. Norling H. Hegedus LS. J. Org. Chem.  2000,  65:  2096 
  • 18 Elbein AD. Annu. Rev. Biochem.  1987,  56:  497 
  • 19a Singha K. Roy A. Dutta PK. Tripathi S. Sahabuddin Sk. Achari B. Mandal SB. J. Org. Chem.  2004,  69:  6507 
  • 19b Sahabuddin Sk. Drew MGB. Roy A. Achari B. Mandal SB. J. Org. Chem.  2006,  71:  5980 
  • 19c Roy BG. Maiti JK. Drew MGB. Achari B. Mandal SB. Tetrahedron Lett.  2006,  47:  8821 
  • 19d Tripathi S. Roy BG. Drew MGB. Achari B. Mandal SB. J. Org. Chem.  2007,  72:  7427 
  • 20a Gothelf KV. Jørgensen KA. Chem. Rev.  1998,  98:  863 
  • 20b Shing TKM. Elsley DA. Gillhouley JG. J. Chem. Soc., Chem. Commun.  1989,  1280 
  • 20c Gallos JK. Stathakis CI. Kotoulas SS. Koumbis AE. J. Org. Chem.  2005,  70:  6884 
  • 21 Maity JK. Ghosh R. Drew MGB. Achari B. Mandal SB. J. Org. Chem.  2008,  73:  4305 
  • 23a Anantharamaiah GM. Sivanandaiah KM. J. Chem. Soc., Perkin Trans. 1  1977,  490 
  • 23b Hanessian S. Liak TJ. Vanasse B. Synthesis  1981,  396 
  • 23c Collins PM. Ashwood MS. Eder H. Wright SHB. Kennedy DJ. Tetrahedron Lett.  1990,  31:  2055 
  • 25a CrysAlis   Oxford Diffraction Ltd.; Abingdon UK: 2006. 
  • 25b Sheldrick GM. Acta Crystallogr., Sect. A  2008,  64:  112 
22

We tried several times to cleave the isoxazolidine ring in addition to reducing the double bond of 19 by hydrogenation reaction, but every time only the double bond was reduced. In contrast, successful isoxazolidine ring cleavage occurred in the cases of 9 and 10. We do not have an explanation for this.

24

Crystal data for 9 have been deposited at the Cambridge Crystallographic Data Centre with reference number CCDC 750271. Data can be obtained via www.ccdc.cam.ac.uk/data_request/cif.