Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2010(11): 1883-1890
DOI: 10.1055/s-0029-1218785
DOI: 10.1055/s-0029-1218785
SPECIALTOPIC
© Georg Thieme Verlag
Stuttgart ˙ New York
Syntheses of Mono-, Di-, and Trifluorinated Styrenic Monomers
Further Information
Received
29 April 2010
Publication Date:
12 May 2010 (online)
Publication History
Publication Date:
12 May 2010 (online)
Abstract
Concise syntheses of gram quantities of three fluorinated α-methylstyrenic monomers suitable for polymerisation studies are disclosed, all based on the use of reasonably priced commercially available starting materials and reagents.
Key words
fluorination - nucleophilic fluoroalkylation - palladium catalysis - monomer synthesis - functional fluoropolymers
-
1a
Wall LA. Fluoropolymers Wiley; New York: 1972. -
1b
Feiring AE. In Organofluorine Chemistry: Principles and Commercial ApplicationsBanks RE.Smart BE.Tatlow JC. Plenum Press; New York: 1994. Chap. 15. p.339-372 -
1c
Scheirs J. Modern Fluoropolymers Wiley; New York: 1997. -
1d
Hougham G.Davidson T.Cassidy P.Johns K. Fluoropolymers Kluvert; New York: 1999. -
1e
Ameduri B.Boutevin B. Well Architectured Fluoropolymers: Synthesis, Properties and Applications Elsevier; Amsterdam: 2004. -
2a
Kobayashi S,Munekuta S,Unoki M, andIwamoto T. inventors; Patent EP 0239935. -
2b
Yamamoto T,Matsumoto T,Shimada K,Uozu Y, andMurata R. inventors; Patent EP 0256765. -
2c
Skutnik BJ. inventors; Patent AU 569145. -
2d
Yamamoto S, andMatsumoto M. inventors; Patent JP 63430104. - 3
Boutevin B.Pietrasanta Y. Les Acrylates et poly Acrylates fluorés Erec; Paris: 1998. - 4
Banks BA. The Use of Fluoropolymers in Space Applications, Modern Fluoropolymers Wiley; New York: 1999. Chap. 4. p.103-114 -
5a
Souzy R.Ameduri B.Boutevin B. J. Polym. Sci., Part A: Polym. Chem. 2004, 42: 5077 -
5b
Kostov G.Tredwell M.Ameduri B.Gouverneur V. J. Poly. Sci., Part A: Polym. Chem. 2007, 45: 3843 -
6a
Olofsson K.Larhed M.Hallberg A. J. Org. Chem. 1998, 63: 5076 -
6b
Tredwell M.Gouverneur V. Org. Biomol. Chem. 2006, 4: 26 -
6c
Nyffeler PT.Duron SG.Burkart MD.Vincent SP.Wong C.-H. Angew. Chem. Int. Ed. 2005, 44: 192 - 7
Mo J.Xu L.Xiao J. J. Am. Chem. Soc. 2005, 127: 751 - 8
Luo H.-Q.Loh T.-P. Tetrahedron Lett. 2009, 50: 1554 -
9a
Mo J.Xu L.Ruan J.Liu S.Xiao J. Chem. Commun. 2006, 3591 -
9b
Pei W,Sun L, andXiao J. inventors; Patent CN 1,634,825. - 10
Organ MG.Murray AP. J. Org. Chem. 1997, 62: 1523 - 11
Bresciani S.Slawin AMZ.O’Hagan D. J. Fluorine Chem. 2009, 130: 537 -
12a
Kotov SV.Pedersen SD.Qiu W.Qiu Z.-M.Burton DJ. J. Fluorine Chem. 1997, 82: 13 -
12b
Stone C.Daynard TS.Hu L.-Q.Mah C.Steck AE. J. New Mater. Electrochem. Syst. 2000, 3: 43 -
12c
Lafitte B.Jannasch P. On the Prospects for Phosphonated Polymers as Proton-Exchange Fuel Cell Membranes, In Advances in Fuel CellsZhao T.Kreuer K.-D.Van Nguyen T. Elsevier; Amsterdam: 2007. Chap. 3. -
13a
Ohmori H.Nakai S.Masui M. J. Chem. Soc., Perkin Trans. 1 1979, 2023 -
13b
Obrycki R.Griffin CE. J. Org. Chem. 1968, 33: 632 -
13c
Plumb JB.Obrycki R.Griffin CE. J. Org. Chem. 1966, 31: 2455 -
14a
Balthazor TM.Grabiak RC. J. Org. Chem. 1980, 45: 5425 -
14b
Tavs P. Chem. Ber./Recl 1970, 103: 2428 -
15a
Schwan AL. Chem. Soc. Rev. 2004, 33: 218 -
15b
Hirao T.Masunaga T.Yamada N.Ohshiro Y.Agawa T. Bull. Chem. Soc. Jpn. 1982, 55: 909 -
16a
Burger A.Dawson ND. J. Org. Chem. 1951, 16: 1250 -
16b
Dawson ND.Burger A. J. Org. Chem. 1953, 18: 207 -
16c
Eymery F.Iorga B.Savignac P. Tetrahedron 1999, 55: 13109 -
17a
Organofluorine Compounds. Chemistry and Applications
Hiyama T. Springer; New York: 2000. -
17b
Organofluorine
Chemistry - Principles and Commercial Applications
Banks RE.Smart BE.Tatlow JC. Plenum Press; New York: 1994. -
17c
Fluorine
in Bioorganic Chemistry
Welch JT.Eshwarakrishman S. Wiley; New York: 1991. -
17d
Fluorine-Containing
Molecules. Structure, Reactivity, Synthesis, and Applications
Liebman JF.Greenberg A.Dolbier WR. VCH; New York: 1988. -
18a
Shimazu M.Maeda T.Fujisawa T. J. Fluorine Chem. 1995, 71: 9 -
18b
Kuroboshi M.Hiyama T. J. Fluorine Chem. 1994, 69: 127 -
18c
Hugenberg V.Haufe G. Synlett 2008, 106 -
18d
Hiyama T, andKuroboshi M. inventors; Patent JP 4264041. -
19a
Burton DJ.Wiemers DM. J. Fluorine Chem. 1981, 18: 573 -
19b
Li X.-Y.Jiang X.-K.Gong Y.-F.Pan H.-Q. Acta Chim. Sin. (Engl. Ed.) 1985, 43: 260 -
19c
Prakash GKS.Hu J.Olah GA. J. Org. Chem. 2003, 68: 4457 -
21a
Prakash GKS.Hu J.Wang Y.Olah GA. Eur. J. Org. Chem. 2005, 2218 -
21b
Ni C.Hu J. Tetrahedron Lett. 2005, 46: 8273 - 22 When reductive desulfonation was
performed prior to the dehydration, compound 17 was
observed, but it was contaminated by significant amount of inseparable byproduct.
Kazennikova GV.Talalaeva TV.Zimin AV.Kocheshkov KA. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1961, 6: 1060 - 23
Gøgsig TM.Søbjerg LS.Lindhardt AT.Jensen KL.Skrydstrup T. J. Org. Chem. 2008, 73: 3404 - 24
Jiang B.Xu Y. Tetrahedron Lett. 1992, 33: 511 - 25
Pan R.-q.Liua X.-x.Deng M.-z. J. Fluorine Chem. 1999, 95: 167
References
Trimethyl[difluoro(phenyl)methylsulfonyl]silane was observed in the crude mixture as a major product along with traces of sulfone 17. Notably, purification on Biotage (Biotage KP-SIL SNAP Flash Cartridges) resulted in the recovery of sulfone 17, suggesting that desilylation occurred upon purification.