Synlett 2010(3): 437-440  
DOI: 10.1055/s-0029-1219202
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

In situ Formation of NOx and Br Anion for Aerobic Oxidation of Benzylic Alcohols without Transition Metal

Guanyu Yang*a, Wei Wanga, Weimin Zhua, Cunbin Ana, Xinqin Gaob, Maoping Song*a
a Department of Chemistry, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, P. R. of China
Fax: +86(371)67763927; e-Mail: yangguanyu@zzu.edu.cn; e-Mail: mpsong9350@zzu.edu.cn;
b State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, P. R. of China
Further Information

Publication History

Received 20 October 2009
Publication Date:
15 January 2010 (online)

Abstract

The reaction of KBrO3 and NH2OH˙HCl in situ generates NOx and Br anion, which combine with 2,2,6,6-tetramethylpiperidine-N-oxide (TEMPO) to construct a NO-activating dioxygen, Br-assisted, TEMPO-catalyzed aerobic oxidation of alcohols. Catalyzed by KBrO/NH2OH˙HCl/TEMPO, various benzylic alcohols can be oxidized quantitatively to their corresponding carbonyl compounds under mild conditions. The easy handling and simple product separation make the process an attractive candidate for the oxidation of alcohols.

    References and Notes

  • 1a Caron S. Dugger RWS. Ruggeri G. Ragan JA. Ripin DHB. Chem. Rev.  2006,  106:  2943 
  • 1b Zhan B. Thompson A. Tetrahedron  2004,  60:  2917 
  • 1c Tashiro A. Mitsuishi A. Irie R. Katsuki T. Synlett  2003,  1868 
  • 1d Qian W. Jin E. Bao W. Zhang Y. Angew. Chem. Int. Ed.  2005,  44:  952 
  • 1e Minisci F. Porta O. Recupero F. Punta C. Gambarotti C. Pierini M. Galimberti L. Synlett  2004,  2203 
  • 1f Lenoir D. Angew. Chem. Int. Ed.  2006,  45:  3206 
  • 1g Friedrich HB. Khan F. Singh N. van Staden M. Synlett  2001,  869 
  • 1h Miyamura H. Matsubara R. Miyazaki Y. Kobayashi S. Angew. Chem.Int. Ed.  2007,  46:  4151 
  • 1i Sharma VB. Jain SL. Sain B. Synlett  2005,  173 
  • 1j Lei Z. Yang Y. Bai X. Adv. Synth. Catal.  2006,  348:  877 
  • 2a Sheldon RA. Arends IWCE. J. Mol. Catal. A: Chem.  2006,  251:  2 
  • 2b Minisci F. Punta C. Recupero F. J. Mol. Catal. A: Chem.  2006,  251:  129 
  • 2c Nabyl M. Synlett  2003,  1757 
  • 2d Bailey WF. Bobbitt JM. J. Org. Chem.  2007,  72:  4504 
  • 2e Karimi B. Biglari A. Clark JH. Budarin V. Angew. Chem. Int. Ed.  2007,  46:  7210 
  • 2f Susana B. Synlett  2001,  563 
  • 2g Félix C. Synlett  2006,  657 
  • 2h Vatèle J.-M. Synlett  2006,  2055 
  • 2i Holczknecht O. Cavazzini M. Quici S. Shepperson I. Pozzi G. Adv. Synth. Catal.  2005,  347:  677 
  • 2j Yang G. Guo Y. Wu G. Zheng L. Song M. Prog. Chem.  2007,  19:  1727 
  • 2k Luca LD. Giacomelli G. Porcheddu A. Org. Lett.  2001,  3:  3041 
  • 2l Jiang N. Ragauskas AJ. J. Org. Chem.  2006,  71:  7087 
  • 2m Herrerías CI. Zhang TY. Li C.-J. Tetrahedron Lett.  2006,  47:  13 
  • 3a Yang G. Zhu W. Zhang P. Xue H. Wang W. Tian J. Song M. Adv. Synth. Catal.  2008,  350:  542 
  • 3b Yang G. Ma J. Wang W. Zhao J. Lin X. Zhou L. Gao X. Catal. Lett.  2006,  112:  83 
  • 3c Guo Y. Zhao J. Xu J. Wang W. Tian F. Yang G. Song M. J. Nat. Gas Chem.  2007,  16:  210 
  • 4 Wang N. Liu R. Chen J. Liang X. Chem. Commun.  2005,  5322 
  • 5 Cecchetto A. Fontana F. Miniscia F. Recupero F. Tetrahedron Lett.  2001,  42:  6651 
  • 6a Gamez P. Arends IWCE. Reedijk J. Sheldon RA. Chem. Commun.  2003,  2414 
  • 6b Figiel PJ. Leskelä M. Repo T. Adv. Synth. Catal.  2007,  349:  1173 
  • 7a Dijksman A. Arends IWCE. Sheldon RA. Chem. Commun.  1999,  1591 
  • 7b Dijksman A. Marino-González A. Payeras AM. Arends IWCE. Sheldon RA.
    J. Am. Chem. Soc.  2001,  123:  6826 
  • 8 Liu R. Liang X. Dong C. Hu X. J. Am. Chem. Soc.  2004,  126:  4112 
  • 9 Liu R. Dong C. Liang X. Wang X. Hu X. J. Org. Chem.  2005,  70:  729 
  • 10 Xie Y. Mo W. Xu D. Shen Z. Sun N. Hu B. Hu X. J. Org. Chem.  2007,  72:  4288 
  • 11 Jonnalagadda SB. Shezi MN. J. Phys. Chem. A  2009,  113:  5540 
12

General Typical Procedure for the Oxidation
The reaction was carried out in a 70 mL autoclave, and the general procedure is described typically with benzyl alcohol as follows: To a reactor were added benzyl alcohol (2 mL, 19.3 mmol), NH2OH˙HCl (174.8 mg, 10 mol%), KBrO3 (161.2 mg, 5 mol%), TEMPO (15.1 mg, 0.5 mol%), and CH2Cl2 (10 mL). The closed autoclave was charged with O2 to 0.3 MPa and warmed to 80 ˚C under stirring. The pressure of O2 was kept under 0.4 MPa for 2 h. After cooled to r.t., 20 mL CH2Cl2 were added to the autoclave. Then the solution was analyzed by gas chromatography, which was conducted using an Agilent Technologies 6890N Network GC System with a flame ionization detector and a DB-1 capillary column (30 m × 0.535 mm × 3.0 µm).

13

General Isolation Procedure for the Oxidation Product
After GC showed the reaction to be complete, the reaction mixture was diluted with CH2Cl2 and transferred into a separation funnel. The CH2Cl2 solution was washed with 15 mL of a sat. solution of Na2CO3, followed by brine. The organic layer was dried over anhyd Na2SO4, and the solvent was evaporated to yield the product without further purification.