References and Notes
1a
Fluorine in Bioorganic Chemistry
Filler R.
Kobayasi Y.
Yagupolskii LM.
Elsevier;
Amsterdam:
1993.
1b
Filler R.
Fluorine Containing Drugs in Organofluorine Chemicals
and their Industrial Application
Pergamon;
New York:
1979.
Chap.
6.
1c
Hudlicky M.
Chemistry of Organic Compounds
Ellis
Horwood;
Chichester:
1992.
1d
Kirsch P.
Modern Fluoroorganic Chemistry
VCH;
Weinheim:
2004.
1e
Chambers RD.
Fluorine in Organic Chemistry
Blackwell
Publishing CRC Press;
Boca Raton:
2004.
See also:
1f
Ryckmanns T.
Balancon L.
Berton O.
Genicot C.
Lamberty Y.
Lallemand B.
Passau P.
Pirlot N.
Quéré L.
Talaga P.
Bioorg. Med. Chem. Lett.
2002,
12:
261
1g
Malamas MS.
Sredy J.
Moxham C.
Katz A.
Xu W.
McDevitt R.
Adebayo FO.
Sawicki DR.
Seestaller L.
Sullivan D.
Taylor JR.
J.
Med. Chem.
2000,
43:
1293
1h
Ciha AJ.
Ruminski PG.
J.
Agric. Food Chem.
1991,
39:
2072
1i
Albrecht HA.
Beskid G.
Georgopapadakou NH.
Keith DD.
Konzelmann FM.
Pruess DL.
Rossman PL.
Wei CC.
Christenson JG.
J.
Med. Chem.
1991,
34:
2857
1j
Albrecht HA.
Beskid G.
Christenson JG.
Deitcher KH.
Georgopapadakou NH.
Keith DD.
Konzelmann FM.
Pruess DL.
Wie CC.
J.
Med. Chem.
1994,
37:
400
1k
Song CW.
Lee
KY.
Kim CD.
Chang T.-M.
Chey WY.
J. Pharmacol. Exp. Ther.
1997,
281:
1312
1l
De Voss JJ.
Sui Z.
DeCamp DL.
Salto R.
Babe LM.
Craik CS.
Ortiz de Montellano PR.
J. Med. Chem.
1994,
37:
665
1m
Anjaiah S.
Chandrasekhar S.
Gree R.
Adv.
Synth. Catal.
2004,
346:
1329
1n
Iorio MA.
Paszkowska RT.
Frigeni V.
J. Med. Chem.
1987,
30:
1906
1o
Popp JL.
Musza LL.
Barrow CJ.
Rudewicz PJ.
Houck DR.
J. Antibiot.
1994,
47:
411
1p
Chen TS.
Petuch B.
MacConnell J.
White R.
Dezeny G.
J.
Antibiot.
1994,
47:
1290
1q
Lam KS.
Schroeder DR.
Veitch JMJM.
Colson KL.
Matson JA.
Rose WC.
Doyle TW.
Forenza S.
J.
Antibiot.
2001,
54:
1
1r
Purser S.
Moore
PR.
Swallow S.
Gouverneur V.
Chem.
Soc. Rev.
2008,
37:
320
2
Bégué JP.
Bonnet-Delpon D.
J.
Fluorine Chem.
2006,
127:
992
3
Isanbor C.
O’Hagan D.
J. Fluorine Chem.
2006,
127:
303
4
Beller M.
Neumann H.
Anbarasan P.
Angew.
Chem. Int. Ed.
2009,
48:
1
5
Metal-Catalyzed
Cross-Coupling Reactions
de Meijere A.
Diederich F.
Wiley-VCH;
Weinheim:
2004.
6a
Schmidbaur H.
Kumberger O.
Chem.
Ber.
1993,
126:
3
6b
Dinger MB.
Henderson W.
J. Organomet.
Chem.
1998,
560:
233
6c
Liedtke J.
Loss S.
Widauer C.
Grützmacher H.
Tetrahedron
2000,
56:
143
6d
Schneider S.
Tzschucke CC.
Bannwarth W.
Multiphase Homogeneous Catalysis
Cornils B.
Herrmann WA.
Horvath IT.
Leitner W.
Mecking S.
Olivier-Booubigou H.
Vogt D.
Wiley-VCH;
Weinheim:
2005.
Chap.
4.
p.346
6e
Clarke D.
Ali MA.
Clifford AA.
Parratt A.
Rose P.
Schwinn D.
Bannwarth W.
Rayner CM.
Curr. Top. Med. Chem.
2004,
7:
729
Reviews:
7a
Wittkopp A.
Schreiner PR.
The
Chemistry of Dienes and Polyenes
Vol. 2:
John
Wiley and Sons;
Chichester:
2000.
7b
Schreiner PR.
Chem. Soc. Rev.
2003,
32:
289
See also:
7c
Wittkopp A.
Schreiner PR.
Chem. Eur. J.
2003,
9:
407
7d
Kleiner CM.
Schreiner PR.
Chem.
Commun.
2006,
4315
7e
Kotke M.
Schreiner PR.
Synthesis
2007,
779
Review:
7f
Tsogoeva SB.
Eur. J. Org. Chem.
2007,
1701
For reviews of cross-coupling reactions
of polyhalogenated heterocycles, see:
8a
Schröter S.
Stock C.
Bach T.
Tetrahedron
2005,
61:
2245
8b
Schnürch M.
Flasik R.
Khan AF.
Spina M.
Mihovilovic MD.
Stanetty P.
Eur. J.
Org. Chem.
2006,
3283
9a
Dang TT.
Dang TT.
Rasool N.
Villinger A.
Langer P.
Adv. Synth. Catal.
2009,
351:
1595
9b
Dang
TT.
Dang TT.
Ahmad R.
Reinke H.
Langer P.
Tetrahedron Lett.
2008,
49:
1698
9c
Dang TT.
Villinger A.
Langer P.
Adv. Synth. Catal.
2008,
350:
2109
9d
Hussain M.
Dang TT.
Langer P.
Synlett
2009,
1822
10
Nawaz M.
Farooq MI.
Obaid-Ur-Rahman A.
Khera RA.
Villinger A.
Langer P.
Synlett
2010,
150
11
General Procedure
for Suzuki Reactions
A 1,4-dioxane solution (4 mL
per 0.3 mmol of 1) of 1, Cs2CO3,
Pd(PPh3)4, and arylboronic acid 2 was stirred at
90 ˚C
for 6 or 8 h. After cooling to r.t. the organic and the aqueous
layer were separated and the latter was extracted with CH2Cl2.
The combined organic layers were dried (Na2SO4),
filtered, and the filtrate was concentrated in vacuo. The residue
was purified by column chromatography.
12
1,2-Di(2-Methoxyphenyl)-3,5-difluorobenzene
(3f)
Starting with 1 (100
mg, 0.37 mmol), Cs2CO3 (263 mg, 0.81 mmol),
Pd(PPh3)4 (3 mol%), 2-methoxyphenylboronic
acid (123 mg, 0.81 mmol), and 1,4-dioxane (4 mL), 3f was isolated
as a colorless solid (72 mg, 60%), mp 111-113 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 3.42
(s, 3 H, OCH3), 3.55 (s, 3 H, OCH3), 6.60
(dd, J = 8.3,
0.7 Hz, 1 H, ArH), 6.67-6.88 (m, 6 H, ArH), 6.94 (dd, J = 7.5, 1.7
Hz, 1 H, ArH), 7.05-7.12 (m, 2 H, ArH). ¹³C
NMR (62.89 MHz, CDCl3): δ = 54.9
(OCH3), 55.2 (OCH3), 102.6 (t, ²
J
CF = 26.5
Hz, CH), 110.2 (CH), 110.3 (CH), 113.2 (dd, J
CF = 21.2,
3.5 Hz, CH), 119.7 (CH), 119.9 (CH), 122.1 (dd, J = 17.1,
3.8 Hz, C), 123.1 (C), 128.6 (t, J = 2.1
Hz, C), 128.90 (CH), 128.92 (CH), 131.0 (CH), 131.7 (CH), 141.9
(t, J = 4.9
Hz, C), 156.0 (C), 157.0 (C), 160.1 (dd, J
CF = 247.2,
12.8 Hz, CF), 161.6 (dd, J
CF = 247.2,
13.3 Hz, CF). ¹9F NMR (282.4 MHz, CDCl3): δ = -112.82
(CF), -118.20 (CF). IR (ATR): ν = 3067
(w), 2956 (w), 2926 (w), 2835 (w), 1616 (w), 1596 (w), 1503 (w),
1494 (w), 1455 (w), 1421 (w), 1338 (w), 1287 (w), 1247 (m), 1201
(w), 1180 (w), 1120 (w), 1089 (w), 1024 (m), 928 (w), 877 (w), 865
(w), 800 (w), 755 (w), 744 (m), 701 (w), 635 (w), 586 (m), 537 (w)
cm-¹. MS (EI, 70 eV):
m/z (%) = 326
(100) [M]+, 295 (12), 251
(21), 238 (10). HRMS (EI): m/z calcd
for C20H16O2F2 [M+]:
326.11129; found: 326.11090.
13
2-Bromo-3,5-difluoro-2′,4′-dimethoxybiphenyl
(4d)
Starting with 1 (100 mg, 0.37 mmol), Cs2CO3 (119
mg, 0.37 mmol), Pd(PPh3)4 (3 mol%),
2,4-dimethoxyphenylboronic acid (67 mg, 0.37 mmol), and 1,4-dioxane
(4 mL), 4d was isolated as a colorless
solid (81 mg, 67%), mp 64-66 ˚C. ¹H NMR
(300 MHz, CDCl3): δ = 3.75
(s, 3 H, OCH3), 3.89 (s, 3 H, OCH3), 6.53-6.57
(m, 2 H, Ar), 6.82-6.88 (m, 2 H, Ar), 7.04 (d, J = 8.9 Hz,
1 H, Ar). ¹³C NMR (75.46 MHz, CDCl3): δ = 55.4
(OCH3), 55.6 (OCH3), 98.7 (CH), 103.4 (t, ²
J
CF = 26.6
Hz, CH), 104 (CH), 106.9 (dd, J = 20.4,
4.0 Hz, C), 114.5 (dd, J = 22.3,
3.3 Hz, CH), 121.0 (t, J = 2.2,
C), 131.1 (CH), 142.9 (d, J = 9.8
Hz, C), 157.4 (C), 159.22 (dd, J = 248.0,
13.7 Hz, CF), 161.3 (dd, J = 248.6,
13.2 Hz, CF) 161.4 (C). ¹9F NMR (282.4 MHz,
CDCl3): δ = -100.5
(CF), -112.4 (CF). IR (ATR): ν = 3079
(w), 3002 (w), 2958 (w), 2937 (w), 2836 (w), 1692 (s), 1785 (s),
1509 (s), 1463 (m), 1447 (m), 1468 (w), 1435 (s), 1345 (w), 1304
(s), 1281 (m), 1256 (m), 1206 (s), 1146 (m), 1127 (s), 1101 (s),
1031 (s), 997 (s), 924 (m), 833 (s), 796 (m), 716 (w), 637 (w),
599 (s), 587 (m) cm-¹. MS (EI, 70 eV): m/z (%) = 328
(95) [M]+, 330 (93), 329 (15),
331 (14), 235 (15), 234 (100), 219 (35), 204 (12), 191 (20), 175
(26), 163 (13). ESI-HRMS: m/z calcd
for C14H12BrF2O2 [M + H]+:
328.9983; found: 328.9979.
14
General Procedure
for the Synthesis of 5a-d
The reaction was
carried out in a pressure tube. To a dioxane suspension (4 mL) of 1 (200 mg, 0.74 mmol), Pd(PPh3)4
(3
mol%), and Ar¹B(OH)2 (0.74
mmol) was added Cs2CO3 (359 mg, 1.11 mmol),
and the resultant solution was degassed by bubbling argon through
the solution for 10 min. The mixture was heated at 90 ˚C
under Argon atmosphere for 8 h. The mixture was cooled to 20 ˚C
and Ar²B(OH)2 (0.89 mmol) and Cs2CO3 (359
mg, 1.11 mmol) was added. The reaction mixtures were heated under
Argon atmosphere for 6 h at 100 ˚C. They were
diluted with H2O and extracted with CH2Cl2 (3 × 50
mL). The combined organic layers were dried (Na2SO4),
filtered, and the filtrate was concentrated in vacuo. The residue
was purified by flash chromatography (silica gel, EtOAc-hexane = 1:4).
15
1-(2,4-Dimethoxyphenyl)-2-(4-methylphenyl)-3,5-difluorobenzene
(5a)
Starting with 1 (200 mg, 0.74 mmol), Cs2CO3 (359
mg, 1.11 mmol), Pd(PPh3)4 (3 mol%),
2,6-dimethoxyphenylboronic (134 mg, 0.74 mmol), 1,4-dioxane (4 mL),
and 4-methyl-boronic acid (123 mg, 0.89 mmol), 5a was
isolated as a colorless highly viscous oil (120 mg, 48%). ¹H
NMR (300 MHz, CDCl3): δ = 2.19
(s, 3 H, ArH), 3.32 (s, 3 H, OCH3), 3.69 (s, 3 H, OCH3),
6.17 (d, J = 2.3
Hz, 1 H, Ar), 6.32 (dd, J = 8.3,
2.3 Hz, 1 H, Ar), 6.74-6.83 (m, 2 H, Ar), 6.86-6.91 (m,
5 H, Ar). ¹³C NMR (62.89 MHz, CDCl3): δ = 21.2 (CH3),
55.0 (OCH3), 55.3 (OCH3), 98.4 (CH), 102.5
(t, ²
J
CF = 26.3
Hz, CH), 104.1 (CH), 113.6 (dd, J
CF = 21.9,
3.6 Hz, CH), 121.5 (t, ³
J = 2.8
Hz, C), 125.7 (dd, J = 15.3,
3.6 Hz, C), 128.1 (2 CH), 130.0 (2 CH), 131.1 (C), 131.6 (CH), 136.4
(C), 141.2 (dd, J = 9.6,
4.5 Hz, C), 157.0 (C), 159.8 (dd, J
CF = 246.8,
13.0 Hz, CF), 160.6 (C), 161.1 (dd, J
CF = 247.1,
13.4 Hz, C). ¹9F NMR (282.4 MHz, CDCl3): δ = -111.86
(CF), -112.9 (CF). IR (ATR): ν = 3080
(w), 2998 (w), 2956 (w), 2836 (w), 1736 (w), 1609 (s), 1586 (s), 1508
(s), 1454 (s), 1425 (m), 1401 (m), 1372 (w), 1303 (s), 1255 (m),
1184 (w), 1158 (s), 1145 (s), 1092 (s), 1032 (s), 996 (s), 925 (m),
861 (w), 834 (m), 818 (s)796 (m), 736 (w), 718 (w), 663 (w), 607
(w), 587 (m) cm-¹. MS (EI, 70 eV):
m/z (%) = 340
(100) [M]+, 294 (11), 265
(13), 238 (12). ESI-HRMS: m/z calcd
for C21H19F2O2 [M + H]+:
341.1348; found: 341.1348.
16 CCDC-762919 and 762920 contain all
crystallographic details of this publication and is available free
of charge at www.ccdc.cam.ac.uk/conts/retrieving.html
or can be ordered from the following address: Cambridge Crystallographic
Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: +44
(1223)336033; or deposit@ccdc.cam.ac.uk.
17 For a simple guide for the prediction
of the site selectivity of palladium(0)-catalyzed cross-coupling
reactions based on the ¹H NMR chemical shift
values, see: Handy ST.
Zhang Y.
Chem. Commun.
2006,
299