Synlett 2010(8): 1276-1280  
DOI: 10.1055/s-0029-1219799
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Urea Derivatives from CO2 and Amines Catalyzed by Polyethylene Glycol Supported Potassium Hydroxide without Dehydrating Agents

De-Lin Kong, Liang-Nian He*, Jin-Quan Wang
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. of China
Fax: +86(22)23504216; e-Mail: heln@nankai.edu.cn;
Further Information

Publication History

Received 28 December 2009
Publication Date:
23 March 2010 (online)

Abstract

Polyethylene glycol supported potassium hydroxide (KOH/PEG1000) was developed as a recyclable catalyst for facile synthesis of urea derivatives from amines and CO2 without utilization of additional dehydrating agents. Primary aliphatic amines, secondary aliphatic amines, and diamines can be converted into the corresponding urea derivatives in moderate yields. Furthermore, the catalyst can be recovered after a simple separation procedure, and reused over 5 times with retention of high activity.

    References and Notes

  • Selected examples utilizing ureas in the synthesis of pharmaceuticals, agricultural chemicals, dye chemistry, see:
  • 1a Vishnyakova TP. Golubeva IA. Glebova EV. Russ. Chem. Rev. (Engl. Transl.)  1985,  54:  249 
  • 1b Getman DP. DeCrescenzo GA. Heintz RM. Reed KL. Talley JJ. Bryant ML. Clare M. Houseman KA. Marr JJ. Mueller RA. Vazquez ML. Shieh HS. Stallings WC. Stegeman RA. J. Med. Chem.  1993,  36:  288 
  • 1c Matsuda K. Med. Res. Rev.  1994,  14:  271 
  • 1d Bigi F. Maggi R. Sartori G. Green Chem.  2000,  2:  140 
  • 1e Bartolo G. Salerno G. Mancuso R. Costa M.
    J. Org. Chem.  2004,  69:  4741 
  • 1f Estevez-Souza A. Pissinate K. Nascimento MG. Grynberg NF. Echevaria A. Bioorg. Med. Chem.  2006,  14:  492 
  • 2a Shriner RL. Horne WH. Cox RFB. Org. Synth.  1943,  2:  453 
  • 2b Nowick JS. Powell NA. Nguyen TM. Noronha G. J. Org. Chem.  1992,  57:  7364 
  • For examples of the reaction of amines with CO2 to afford ureas by using dehydrating agents, see:
  • 3a Yamazaki N. Higashi F. Iguchi T. Tetrahedron Lett.  1974,  13:  1191 
  • 3b Ogura H. Takeda K. Tokue R. Kobayashi T. Synthesis  1978,  394 
  • 3c Nomura R. Yamamoto M. Matsuda H. Ind. Eng. Chem. Res.  1987,  26:  1056 
  • 3d Fournier J. Bruneau C. Dixneuf PH. Lgcolier S.
    J. Org. Chem.  1991,  56:  4456 
  • 3e Nomura R. Hasegawa Y. Ishimoto M. Toyosaki T. Matsuda H. J. Org. Chem.  1992,  57:  7339 
  • 3f Tai C.-C. Huck MJ. McKoon EP. Woo T. Jessop PG. J. Org. Chem.  2002,  67:  9070 
  • 3g Porwanski S. Menuel S. Marsura X. Marsura A. Tetrahedron Lett.  2004,  45:  5027 
  • For examples of the reaction of amines with CO2 to afford ureas without dehydrating agents, see:
  • 4a Shi F. Deng Y. SiMa T. Peng J. Gu Y. Qiao B. Angew. Chem. Int. Ed.  2003,  42:  3257 
  • 4b Munshi P. Heldebrant DJ. McKoon EP. Kelly PA. Tai C.-C. Jessop PG. Tetrahedron Lett.  2003,  44:  2725 
  • 4c Shi F. Zhang Q. Ma Y. He Y. Deng Y. J. Am. Chem. Soc.  2005,  127:  4182 
  • 4d Ion A. Parvulescu V. Jacobs P. Vos DD. Green Chem.  2007,  9:  158 
  • 4e Jiang T. Ma X. Zhou Y. Liang S. Zhang J. Han B. Green Chem.  2008,  10:  465 
  • Selected examples using PEG as media for chemical reactions and phase-transfer catalyst, see:
  • 5a Totten GE. Clinton NA. Matlock PL. J. Macromol. Sci. Rev. Macromol. Chem. Phys.  1998,  C38:  77 
  • 5b Naik SD. Doraiswamy LK. AIChE J.  1998,  44:  612 
  • 5c Guo Z. Li M. Willauer HD. Huddleston JG. April GC. Rogers RD. Ind. Eng. Chem. Res.  2002,  41:  253 
  • 5d Ottani S. Vitalini D. Comelli F. Castellari C. J. Chem. Eng. Data  2002,  47:  1197 
  • 5e Cortright RD. Sanchez-Castillo M. Dumesic JA. Appl. Catal., B  2002,  39:  353 
  • 5f Chen J. Spear SK. Huddleston JG. Holbrey JH. Swatloski RP. Rogers RD. Ind. Eng. Chem. Res.  2004,  43:  5358 
  • 5g Chen J. Spear SK. Huddleston JG. Holbrey JH. Rogers RD. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci.  2004,  807:  145 
  • 5h Chen J. Spear SK. Huddleston JG. Rogers RD. Green Chem.  2005,  7:  64 
  • 6 Aresta M. Quaranta E. Tetrahedron  1992,  48:  1515 
  • 7 Cortright RD. Sanchez-Castillo M. Dumesic JA. Appl. Catal., B  2002,  39:  353 
  • 8a Wang J.-Q. He L.-N. New J. Chem.  2009,  33:  1637 
  • 8b Wang J.-Q. He L.-N. Miao C.-X. Gao J. ChemSusChem  2009,  2:  755 
  • 8c Wang J.-Q. He L.-N. Miao C.-X. Green Chem.  2009,  11:  1013 
  • 8d Wang J.-L. He L.-N. Dou X.-Y. Wu F. Aust. J. Chem.  2009,  62:  917 
  • 8e Du Y. Wu Y. Liu A.-H. He L.-N. J. Org. Chem.  2008,  73:  4709 
  • 8f Wang J.-Q. Cai F. Wang E. He L.-N. Green. Chem.  2007,  9:  882 
  • 8g Tian J.-S. Maio C.-X. Wang J.-Q. Cai F. Du Y. Zhao Y. He L.-N. Green Chem.  2007,  9:  566 
  • 8h Dou X.-Y. Wang J.-Q. Wang E. He L.-N. Synlett  2007,  3058 
  • 8i Du Y. Wang J.-Q. Chen J.-Y. Cai F. Tian J.-S. Kong D.-L. He L.-N. Tetrahedron Lett.  2006,  47:  1271 
  • 9 Totten GE. Clinton NA. J. Macromol. Sci. Rev. Macromol. Chem. Phys.  1988,  C28:  293 
  • 10 Typical Procedure for the Preparation of KOH/ PEG1000 PEG1000 (4.0 g), KOH (0.224 g, 4 mmol) and water (20 mL) were mixed and stirred for 2-3 h. Water was then vaporized under reduced pressure. Finally, the residue was dried under vacuum to give the supported catalyst. See: Alvaro M. Baleizao C. Carbonell E. Ghoul EM. Garcia H. Gigante B. Tetrahedron  2005,  61:  12131 
  • 12 Abribat B. Bigot YL. Gaset A. Synth. Commun.  1994,  24:  2091 
  • 14a Nomura R. Hasegawa Y. Ishimoto M. Toyosaki T. Matsuda H. J. Org. Chem.  1992,  57:  7339 
  • 14b Aue DH. Thomas D. J. Org. Chem.  1975,  40:  2356 
  • 14c Becker JY. Zinger B. Yatziv S. J. Org. Chem.  1987,  52:  2783 
  • 14d Lee J. Chubb AJ. Moman E. McLoughlin BM. Sharkey CT. Kelly JG. Nolan KB. Devocelle M. Fitzgerald DJ. Org. Biomol. Chem.  2005,  3:  3678 
  • 14e Orito K. Horibata A. Nakamura T. Ushito H. Nagasaki H. Yuguchi M. Yamashita S. Yamazaki T. Tokuda M. J. Org. Chem.  2006,  71:  5951 
  • 14f Porwanski S. Menuel S. Marsurab X. Marsura A. Tetrahedron Lett.  2004,  45:  5027 
  • 14g Nudelman NS. Lewkowicz ES. Pérez DG. Synthesis  1990,  917 
  • 14h El-Faham A. Khattab SN. Abdul-Ghani M. Albericio F. Eur. J. Org. Chem.  2006,  1563 
  • 14i Mizuno T. Takahashib J. Ogawa A. Tetrahedron  2002,  58:  7805 
11

In the ¹H NMR spectra, the chemical shift for NH peak of Et2NH/CDCl3/CO2 was shifted to upfield from δ = 5.947 to 5.194 ppm after adding PEG to the solution. The ¹H NMR charts were provided on pS15 in the Supplementary Information.

13

General Procedure for the Synthesis of Urea from Amines and CO 2
A 50 mL autoclave reactor was charged with amine (4 mmol), KOH/PEG1000 (0.4 mmol). CO2 was introduced into the autoclave, and then the mixture was stirred at desired temperature for 15 min to allow equilibration. Finally, the pressure was adjusted to the reaction pressure (e.g., 8 MPa), and the mixture was stirred continuously. When the reaction finished, the reactor was cooled in ice-water and CO2 was ejected slowly. An aliquot of sample was taken from the resultant mixture for GC analysis. The catalyst (KOH/PEG1000) was separated by adding Et2O and cooling and recovered by a simple filtration. The products were further identified by ¹H NMR and ¹³C NMR spectroscopy, which are consistent with those reported in the literature¹4 and in good agreement with the assigned structures (see electronic Supplementary Information).

1,3-Dibutylurea (Table 3, Entry 1)
¹H NMR (300 MHz, CDC13): δ = 0.91 (t, 6 H, J = 7.2 Hz), 1.30-1.40 (m, 4 H), 1.41-1.51 (m, 4 H), 3.14 (q, 4 H), 4.61 (br d, NH). ¹³C {lH} NMR (75.5 MHz, CDCl3): δ = 158.5, 40.3, 32.4, 20.0, 13.8.