References and Notes
1a
Compain P.
Martin OR.
Iminosugars: From
Synthesis to Therapeutic Applications
Wiley & Sons;
Chichester:
2007.
1b
Bols M.
Lillelund VH.
Jensen HH.
Liang X.
Chem. Rev.
2002,
102:
515
1c
Zechel DL.
Withers SG.
Acc.
Chem. Res.
2000,
33:
11
1d
Asano N.
Nash RJ.
Molyneux RJ.
Fleet GWJ.
Tetrahedron:
Asymmetry
2000,
11:
1645
1e
Rye CS.
Withers SG.
Curr. Opin. Chem.
Biol.
2000,
4:
573
1f
Iminosugars
as Glycosidase Inhibitors
Stütz AE.
Wiley-VCH;
Weinheim:
1999.
1g
Vasella AT.
Heightman TD.
Angew.
Chem. Int. Ed.
1999,
38:
750
1h
Withers SG.
Namchuk M.
Mosi R. In
Iminosugars as glycosidase inhibitors: Nojirimicyn
and Beyond
Stütz AE.
Wiley-VCH;
Weinheim:
1999.
Chap.
9.
p.188-206
1i
Sinnot ML.
Chem. Rev.
1990,
90:
1171
1j
Bennet AJ.
Sinnot ML.
J.
Am. Chem. Soc.
1986,
108:
7287
For medical applications of iminosugars,
see:
2a
Wrodnigg TM.
Steiner AJ.
Ueberbacher BJ.
Anti-Cancer Agents Med. Chem.
2008,
8:
77
2b
Gerber-Lemaire S.
Juillerat-Jeanneret L.
Mini-Rev.
Med. Chem.
2006,
6:
1043
2c
Robina I.
Moreno-Vargas AJ.
Carmona AT.
Vogel P.
Curr. Drug
Metab.
2004,
5:
329
2d
Greimel P.
Spreitz J.
Stütz AE.
Wrodnigg TM.
Curr.
Top. Med. Chem.
2003,
3:
513
2e
Fan J.-Q.
Trends Pharmacol.
Sci.
2003,
24:
355
2f
Asano N.
Glycobiology
2003,
13:
93R
2g Full issue, guest editors Martin OR.
Compain P.
Curr.
Top. Med. Chem.
2003,
3(5):
2h
Watson AA.
Fleet GWJ.
Asano N.
Molyneux RJ.
Nash RJ.
Phytochemistry
2001,
56:
265
2i
Butters TD.
Dwek RA.
Platt FM.
Chem. Rev.
2000,
100:
4683
For reviews, see:
3a
Afarinkia K.
Bahar A.
Tetrahedron: Asymmetry
2005,
16:
1239
3b
Pearson MSM.
Mathé-Allainmat M.
Fargeas V.
Lebreton J.
Eur.
J. Org. Chem.
2005,
2159
3c
Ayad T.
Genisson Y.
Baltas M.
Curr. Org.
Chem.
2004,
8:
1211
3d
Weintraub PM.
Sabol JS.
Kane JM.
Borcherding DR.
Tetrahedron
2003,
59:
2953
3e
Dhavale DD.
Desai VN.
Saha NN.
Tilekar JN.
ARKIVOC
2002,
(vii):
91
3f
Yoda H.
Curr.
Org. Chem.
2002,
6:
223
3g
Kazmaier U.
Recent
Res. Dev. Org. Chem.
1998,
2:
351
4 Zavesca® or Miglustat® (N-butyl-1-deoxynojirimycin)
for Gaucher’s disease.
5 Miglitol® [(2R,3R,4R,5S)-1-(2-hydroxyethyl)-2-(hydroxymethyl)piperidine-3,4,5-triol] for
diabetes.
For recent syntheses of DNJ, see:
6a
Danoun G.
Ceccon J.
Greene AE.
Poisson J.-F.
Eur. J. Org. Chem.
2009,
4221
6b
Racine E.
Bello C.
Gerber-Lemaire S.
Vogel P.
Py S.
J.
Org. Chem.
2009,
74:
1766
6c
Ruiz M.
Ruanova TM.
Blanco O.
Núñez F.
Pato C.
Ojea V.
J. Org. Chem.
2008,
73:
2240
6d
Malle BM.
Lundt I.
Wrodnigg TM.
Org. Biomol. Chem.
2008,
6:
1779
6e
Zhou Y.
Murphy PV.
Org. Lett.
2008,
10:
3777
6f
Sugiyama M.
Hong Z.
Liang P.-H.
Dean SM.
Whalen LJ.
Greenberg WA.
Wong C.-H.
J.
Am. Chem. Soc.
2007,
129:
14811
6g
Kim IS.
Lee HY.
Jung
YH.
Heterocycles
2007,
71:
1787
6h
Song X.
Hollingsworth RI.
Tetrahedron
Lett.
2007,
48:
3115
6i
Boucheron C.
Compain P.
Martin OR.
Tetrahedron Lett.
2006,
47:
3081
6j
Thomassigny C.
Barroso MT.
Greck C.
Lett.
Org. Chem.
2005,
2:
316
6k
Tite T.
Lallemand M.-C.
Poupon E.
Kunesch N.
Tillequin F.
Gravier-Pelletier C.
Merrer YL.
Husson H.-P.
Bioorg. Med.
Chem.
2004,
12:
5091
6l
Takahata H.
Banba Y.
Sasatani M.
Nemoto H.
Kato A.
Adachi I.
Tetrahedron
2004,
60:
8199
6m
McDonnell C.
Cronin L.
O’Brien
JL.
Murphy PV.
J.
Org. Chem.
2004,
69:
3565
6n For selected syntheses
of DNJ isomers, see ref. 6b, 6c and references therein, and refs
6d, 6f, 6g, 6h, and 6i
See ref. 6j, and:
7a
Pampín MB.
Fernández F.
Estévez JC.
Estévez RJ.
Tetrahedron: Asymmetry
2009,
20:
503
7b
Poupon E.
Luong B.-X.
Chiaroni A.
Kunesch N.
Husson H.-P.
J.
Org. Chem.
2000,
65:
7208
7c
Kilonda A.
Compernolle F.
Peeters K.
Joly GJ.
Toppet S.
Hoornaert GJ.
Tetrahedron
2000,
56:
1005
7d
McCort I.
Fort S.
Dureault A.
Depezay J.-C.
Bioorg. Med. Chem.
2000,
8:
135
7e
Kilonda A.
Compernolle F.
Hoornaert GJ.
J.
Org. Chem.
1995,
60:
5820
7f
Kilonda A.
Compernolle F.
Toppet S.
Hoornaert GJ.
J. Chem. Soc., Chem.
Commun.
1994,
2147
7g
Paulsen H.
Steinert G.
Chem. Ber.
1967,
100:
2467
8a
Lo Re D.
Franco F.
Sánchez-Cantalejo F.
Tamayo
JA.
Eur. J. Org. Chem.
2009,
1984
8b
Izquierdo I.
Tamayo JA.
Rodríguez M.
Franco F.
Lo Re D.
Tetrahedron
2008,
64:
7910
8c
Izquierdo I.
Plaza MT.
Tamayo JA.
Mota JA.
Synthesis
2004,
1083
8d
Izquierdo I.
Plaza MT.
Robles R.
Mota AJ.
Franco F.
Tetrahedron:
Asymmetry
2001,
12:
2749
Starting material 8 was
purchased from Carbosynth Limited (http://www.carbosynth.com).
Alternatively, it can be synthesized as described in the following
references:
9a
Meng X.-B.
Li Y.-P.
Li Z.-J.
J.
Chin. Pharm. Sci.
2007,
16:
43
9b
An J.-N.
Meng X.-B.
Yao Y.
Li Z.-J.
Carbohydr. Res.
2006,
341:
2200
9c
Lee CK.
Carbohydr. Res.
1987,
170:
255
9d
Tokuyama K.
Bull.
Chem. Soc. Jpn.
1964,
37:
1133-1137
9e
Morgan WThJ.
Reichstein T.
Helv.
Chim. Acta
1938,
21:
1023
10
Synthesis of (2
R
,3
R
,4
R
,5
S
)-2-(aminomethyl)-3,4,5-piperidinetriol
dihydrochloride [(6-amino-6-deoxy-DNJ) or (6-amino-1,5-imino-1,5,6-trideoxy-
d
-glucitol)
4] from diazido intermediate 6: A solution of 6 (206 mg, 0.76 mmol) in 50% aq
TFA (3 mL) was stirred at r.t. for 24 h. The mixture was evaporated
and codistilled with water and toluene several times. The final
residue was subjected to a short flash chromatography column (Et2O)
to give 10, which was used directly in
the next step without further purification. IR: 3399 (OH), 2109
(N3) cm-¹.
A solution
of compound 10 (142 mg, 0.62 mmol)in anhydrous
MeOH (20 mL) was hydrogenated at 60 psi over 10% Pd/C
(35 mg) for 24 h. The catalyst was filtered off, washed with MeOH
and the resulting filtrate evaporated. The residue was transferred
to a Dowex 50W×8 (200-400 mesh) column that was
eluted with MeOH (30 mL), H2O (20 mL) and 7% NH4OH
(40 mL), consecutively. After evaporation of the solvent the residue
was acidified with 10% aqueous HCl (10 mL) and then evaporated
to afford 4 (94 mg, 65% from 6) as a reddish foam; [α]D
²³ +10
(c 0.25, H2O). ¹H
NMR (500 MHz, D2O): δ = 3.67
(ddd, J
1,2 = 9.5, J
1
′
,2 = 11.8, J
2,3 = 5.2
Hz, 1 H, H-2), 3.56 (t, J
3,4 = J
4,5 = 9.3 Hz,
1 H, H-4), 3.49-3.37 (m, 4 H, H-1,3,5,6), 3.29 (dd, J
5,6 = 4.4, J
6,6
′ = 13.2
Hz, 1 H, H-6′), 2.90 (t, J
1,1
′ = 11.8
Hz, 1 H, H-1′). ¹³C NMR (125
MHz, D2O): δ = 78.3
(C-3), 73.5 (C-4), 68.9 (C-2), 57.8 (C-5), 48.8 (C-1), 41.9 (C-6).
HRMS (ES): m/z [M + H]+ calcd
for C6H15N2O3: 163.1083;
found: 163.1079
11a
Izquierdo I.
Plaza M.-T.
Robles R.
Mota AJ.
Eur. J.
Org. Chem.
2000,
2071
11b
Izquierdo I.
Plaza M.-T.
Robles R.
Rodríguez C.
Ramírez A.
Mota AJ.
Eur.
J. Org. Chem.
1999,
1269
12a
von der Osten C.-H.
Sinskey AJ.
Barbas AF.
Pederson RL.
Wang Y.-F.
Wong C.-H.
J. Am.
Chem. Soc.
1989,
111:
3924
12b
Kajimoto T.
Chen L.
Liu KK.-C.
Wong C.-H.
J. Am. Chem. Soc.
1991,
113:
6678
13
Synthesis of (2
S
,3
R
,4
S
,5
S
)-2-(aminomethyl)-3,4,5-piperidinetriol
dihydrochloride [(6-amino-1,6-dideoxy-
l
-
talo
nojirimycin)
or (6-amino-1,5-imino-1,5,6-trideoxy-
l
-talitol) 5] from
diazido intermediate 7: A solution of 7 (216
mg, 0.8 mmol) in 50% aqueous TFA (4 mL) was stirred at
r.t. for 18 h. The mixture was evaporated and codistilled with water
and toluene several times. The final residue was subjected to a
short flash chromatography column (Et2O) to give 12, which was used directly in the next
reaction without further purification. IR (KBr): 3391 (OH), 2106
(N3) cm-¹.
A solution
of compound 12 (95 mg, 0.41 mmol)in anhydrous MeOH
(20 mL) was hydrogenated at 60 psi over 10% Pd/C (25
mg) for 24 h. The catalyst was filtered off, washed with MeOH and
evaporated. The residue was transferred to a Dowex 50W×8
(200-400 mesh) column that was eluted with MeOH (30 mL),
H2O (20 mL) and 7% NH4OH (40 mL), consecutively.
After evaporation of the solvent, the residue was acidified with
10% aqueous HCl (10 mL) and then evaporated to afford 5 (71 mg, 73%) as a reddish foam; [α]D
²4 +33
(c 0.25, H2O).¹H
NMR (400 MHz, D2O): δ = 4.31 (br s,
2 H, H-2,4), 3.96 (t, J
3,4 = J
2,3 = 3.3
Hz, 1 H, H-3), 3.79 (m, 1 H, H-5), 3.67-3.59 (m, 2 H, H-1,6),
3.50 (dd, J
5,6 = 5.7, J
6,6
′ = 13.9
Hz, 1 H, H-6′), 3.40 (br d, 1 H, H-1′). ¹³C
NMR (100 MHz, D2O): δ = 70.2 (C-2 or
4), 69.5 (C-3), 68.4 (C-2 or 4), 58.3 (C-5), 51.0 (C-1), 40.6 (C-6).
HRMS (ES): m/z [M + H]+ calcd
for C6H15N2O3: 163.1083;
found: 163.1082