Semin Thromb Hemost 2009; 35(2): 204-212
DOI: 10.1055/s-0029-1220328
© Thieme Medical Publishers

Genetic Testing in the Diagnostic Evaluation of Inherited Platelet Disorders

Alan T. Nurden1 , Mathieu Fiore1 , Xavier Pillois1 , Paquita Nurden1
  • 1Centre de Référence des Pathologies Plaquettaires, Plateforme Technologique et d'Innovation Biomédicale, Pessac, France
Further Information

Publication History

Publication Date:
30 April 2009 (online)

ABSTRACT

Inherited disorders of platelets give rise to rare bleeding syndromes through defects of platelet function and/or platelet production. Platelet function testing by biological and immunologic assays can identify the loss or abnormal functioning of specific receptor systems, signaling pathways, storage organelles, or enzymatic activities essential for adhesion, activation, and aggregation. In vitro culture of megakaryocytes can help identify the origin of familial thrombocytopenias, and electron microscopy can point to ultrastructural defects and giant platelet syndromes. But a full diagnosis can only be complete when the genetic defect has been defined for each patient. Glanzmann thrombasthenia (GT) and the Bernard-Soulier syndrome are the most studied of the membrane disorders and a wide range of mutations identified. We will use GT as an example to show how genetic studies can help understand the cell biology, pathophysiology, and management of a group of rare diseases where many of the genetic causes remain to be elucidated. Knowledge of the mutation in GT and whether it affects either of the ITGA2B or ITGB3 genes will be essential as we enter the period where accurate prenatal diagnosis and gene therapy may become viable options.

REFERENCES

  • 1 Nurden A, George J N. Inherited abnormalities of the platelet membrane: Glanzmann thrombasthenia, Bernard-Soulier syndrome, and other disorders. In: Colman RW, Marder VJ, Clowes AW, et al Haemostasis and Thrombosis: Basic Principles & Clinical Practice. 5th ed. Philadelphia, PA; Lippincott Williams & Wilkins 2006: 987-1010
  • 2 Nurden P, George J N, Nurden A. Inherited thrombocytopenias. In: Colman RW, Marder VJ, Clowes AW, et al Haemostasis and Thrombosis: Basic Principles & Clinical Practice. 5th ed. Philadelphia, PA; Lippincott Williams & Wilkins 2006: 975-986
  • 3 Bolton-Maggs P HB, Chalmers E A, Collins P W et al.. A review of inherited platelet disorders with guidelines for their management on behalf of the UKHCDO.  Br J Haematol. 2006;  135 603-633
  • 4 Salles I I, Feys H B, Iserbyt B F et al.. Inherited traits affecting platelet function.  Blood Rev. 2008;  22 155-172
  • 5 Nurden P, Nurden A T. Congenital disorders associated with platelet dysfunctions.  Thromb Haemost. 2008;  99 253-263
  • 6 Jackson S P. The growing complexity of platelet aggregation.  Blood. 2007;  109 5087-5095
  • 7 Nurden A T. Glanzmann thrombasthenia.  Orphanet J Rare Dis. 2006;  1 10-20
  • 8 Peretz H, Rosenberg N, Landau M et al.. Molecular diversity of Glanzmann thrombasthenia in southern India: new insights into mRNA splicing and structure-function correlations of aIIbb3 integrin (ITGA2B, ITGB3).  Hum Mutat. 2006;  27 359-369
  • 9 Andrews R K, Karunakaran D, Gardiner E E, Berndt M C. Platelet receptor proteolysis: a mechanism for downregulating platelet reactivity.  Arterioscler Thromb Vasc Biol. 2007;  27 1511-1520
  • 10 Jones C I, Garner S F, Angenent W et al.. Mapping the platelet profile for functional genomic studies and demonstration of the effect size of the GP6 locus.  J Thromb Haemost. 2007;  5 1756-1765
  • 11 Rao A K. Inherited defects in platelet signaling mechanisms.  J Thromb Haemost. 2003;  1 671-681
  • 12 Kahr W HA, Zheng S, Sheth P M et al.. Platelets from patients with the Quebec platelet disorder contain and secrete abnormal amounts of urokinase-type plasminogen activator.  Blood. 2001;  98 257-265
  • 13 Veljkovic D K, Rivard G E, Diamandis M et al.. Increased expression of urokinase plasminogen activator in Quebec platelet disorder is linked to megakaryocyte differentiation.  Blood. 2009;  113 1535-1542
  • 14 Diamandis M, Paterson A D, Rommens J M et al.. Quebec platelet disorder is linked to the urokinase plasminogen activator gene (PLAU) and increased expression of the linked allele in megakaryocytes.  Blood. 2009;  113 1543-1546
  • 15 Adler D H, Cogan J D, Phillips III J A et al.. Inherited human cPLA(2α) deficiency is associated with impaired eicosanoid biosynthesis, small intestinal ulceration, and platelet dysfunction.  J Clin Invest. 2008;  118 2121-2131
  • 16 Isenberg J S, Romeo M J, Yu C et al.. Thrombospondin-1 stimulates platelet aggregation by blocking the antithrombotic activity of nitric oxide/cGMP signaling.  Blood. 2008;  111 613-623
  • 17 Junt T, Schulze H, Chen Z et al.. Dynamic visualization of thrombopoiesis within bone marrow.  Science. 2007;  317 1767-1770
  • 18 Geddis A E, Kaushanksy K. Inherited thrombocytopenias: towards a molecular understanding of disorders of platelet production.  Curr Opin Pediatr. 2004;  16 15-22
  • 19 Kunishima S, Hamaguchi M, Saito S. Differential expression of wild-type and mutant NMMHC-IIA polypeptides in blood cells suggests cell-specific regulation mechanisms in MYH9-related disorders.  Blood. 2008;  111 3015-3023
  • 20 Althaus K, Greinacher A. MYH9-related platelet disorders.  Semin Thromb Hemost. 2009;  35 189-203
  • 21 Ghevaert C, Salsmann A, Watkins N A et al.. A nonsynchronymous SNP in the ITGB3 gene disrupts the conserved membrane-proximal cytoplasmic salt bridge in the αIIbß3 integrin and cosegregates dominantly with abnormal proplatelet formation and macrothrombocytopenia.  Blood. 2008;  111 3407-3414
  • 22 Nurden P, Debili N, Vainchenker W et al.. Impaired megakaryocytopoiesis in type 2B Willebrand disease with severe thrombocytopenia.  Blood. 2006;  108 2587-2595
  • 23 Chang Y, Aurade F, Larbret F et al.. Proplatelet formation is regulated by the Rho/ROCK pathway.  Blood. 2007;  109 4229-4236
  • 24 Hayward C P, Rao A K, Cattaneo M. Congenital platelet disorders: overview of their mechanisms, diagnostic evaluation and treatment.  Haemophilia. 2006;  12 128-136
  • 25 Godeau B, Provan D, Bussel J. Immune thrombocytopenic purpura in adults.  Curr Opin Hematol. 2007;  14 535-556
  • 26 Hayward C P, Harrison P, Cattaneo M on behalf of the Platelet Physiology Committee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis et al. Platelet function analyzer (PFA)-100 closure time in the evaluation of platelet disorders and platelet function.  J Thromb Haemost. 2006;  4 312-319
  • 27 Dawood B B, Wilde J, Watson S P. Reference curves for aggregation and ATP secretion to aid diagnosis of platelet-based bleeding disorders: effect of inhibition of ADP and thromboxane A2 pathways.  Platelets. 2007;  18 329-345
  • 28 Michelson A D, Linden M D, Barnard M R, Furman M I, Frelinger III A L. Flow cytometry. In: Michelson A Platelets. 2nd ed. San Diego; Academic Press 2007: 545-563
  • 29 Garcia A, Shankar H, Murugappan S et al.. Regulation and functional consequences of ADP receptor-mediated ERK2 activation in platelets.  Biochem J. 2007;  404 299-308
  • 30 Balduini C L, Cattaneo M, Fabris F et al.. Italian Gruppo di Studio delle Piastrine. Inherited thrombocytopenias: a proposed diagnostic algorithm from the Italian Gruppo di Studio delle Piastrine.  Haematologica. 2003;  88 582-592
  • 31 Notarangelo L D, Miao C H, Ochs H D. Wiskott-Aldrich syndrome.  Curr Opin Hematol. 2008;  15 30-36
  • 32 Nurden A T, Phillips D R, George J N. Platelet membrane glycoproteins: historical perspectives.  J Thromb Haemost. 2006;  4 3-9
  • 33 George J N, Caen J P, Nurden A T. Glanzmann's thrombasthenia: the spectrum of clinical disease.  Blood. 1990;  75 1383-1395
  • 34 Mitchell W B, Li J, Murcia M et al.. Mapping early conformational changes in αIIb and β3 during biogenesis reveals a potential mechanism for αIIbß3 adopting its bent conformation.  Blood. 2007;  109 3725-3732
  • 35 Kasirer-Friede A, Kahn M L, Shattil S J. Platelet integrins and immunreceptors.  Immunol Rev. 2007;  218 247-264
  • 36 Xiao T, Takagi J, Coller B S et al.. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics.  Nature. 2004;  432 59-67
  • 37 Newman P J, Seligsohn U, Lyman S, Coller B S. The molecular genetic basis of Glanzmann thrombasthenia in the Iraqi-Jewish and Arab populations in Israel.  Proc Natl Acad Sci U S A. 1991;  88 3160-3164
  • 38 Milet-Marsal S, Breillat C, Peyruchaud O et al.. Analysis of the amino acid requirement for a normal αIIbß3 maturation at αIIbGlu324 commonly mutated in Glanzmann thrombasthenia.  Thromb Haemost. 2002;  88 655-662
  • 39 Schlegel N, Gayet O, Morel-Kopp M-C et al.. The molecular genetic basis of Glanzmann's thrombasthenia in a gypsy population in France: identification of a new mutation on the αIIb gene.  Blood. 1995;  86 977-982
  • 40 Jin Y, Dietz H C, Nurden A, Bray P F. Single-strand conformation polymorphism analysis is a rapid and effective method for the identification of mutations and polymorphisms in the gene for glycoprotein IIIa.  Blood. 1993;  82 2281-2288
  • 41 Gonzalez-Manchon C, Arias-Salgado E G, Butta N et al.. A novel homozygous splice junction mutation in GPIIb associated with alternative splicing, nonsense-mediated decay of GPIIb-mRNA, and type II Glanzmann's thrombasthenia.  J Thromb Haemost. 2003;  1 1071-1078
  • 42 Rosenberg N, Hauschner H, Peretz H et al.. A 13-bp deletion in αIIb gene is a founder mutation that predominates in Palestinian-Arab patients with Glanzmann thrombasthenia.  J Thromb Haemost. 2005;  3 2764-2772
  • 43 Nurden A T, Breillat C, Jacquelin B et al.. Triple heterozygosity in the integrin αIIb subunit in a patient with Glanzmann's thrombasthenia.  J Thromb Haemost. 2004;  2 813-819
  • 44 French D L, Coller B S, Usher S et al.. Prenatal diagnosis of Glanzmann thrombasthenia using the polymorphic markers BRCA1 and THRA1 on chromosome 17.  Br J Haematol. 1998;  102 582-587
  • 45 Ruiz C, Liu C Y, Sun Q H et al.. A point mutation in the cysteine-rich domain of glycoprotein (GP) IIIa results in the expression of a GPIIb-IIIa (αIIbß3) integrin receptor locked in a high-affinity state and a Glanzmann thrombasthenia-like phenotype.  Blood. 2001;  98 2432-2441
  • 46 Peyruchaud O, Nurden A T, Milet S et al.. R to Q amino acid substitution in the GFFKR sequence of the cytoplasmic domain of the integrin αIIb subunit in a patient with a Glanzmann thrombasthenia-like syndrome.  Blood. 1998;  92 4178-4187
  • 47 Mory A, Feigelson S W, Yarali N et al.. Kindlin-3: a new gene involved in the pathogenesis of LAD-III.  Blood. 2008;  112 2591
  • 48 Pecci A, Panza E, Pujol-Moix N et al.. Position of nonmuscle myosin heavy chain IIA (NMMHC-IIA) mutations predicts the natural history of MYH9-related disease.  Hum Mutat. 2008;  29 409-417
  • 49 Kopp J B, Smith M W, Nelson G W et al.. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis.  Nat Genet. 2008;  40 1175-1184
  • 50 Huizing M, Helip-Wooley A, Westbroek W et al.. Disorders of lysozyme-related organelle biogenesis: clinical and molecular genetics.  Annu Rev Genomics Hum Genet. 2008;  9 359-386
  • 51 Macaulay I C, Carr P, Gusnanto A et al.. Platelet genomics and proteomics in human health and disease.  J Clin Invest. 2005;  115 3370-3377

Dr. Alan T Nurden

Centre de Référence des Pathologies Plaquettaires, Plateforme Technologique et d'Innovation Biomédicale

Hôpital Xavier Arnozan, Pessac 33600, France

Email: Alan.Nurden@cnrshl.u-bordeaux2.fr

    >