Zusammenfassung
Die bildgebende Diagnostik liefert die Grundlagen für eine spezifische und damit effektive
Therapie des Schlaganfalls. Fortschritte in der Technik bildgebender Verfahren haben
in den letzten Jahrzehnten viel zum Verständnis der Pathophysiologie der zerebralen
Ischämie beigetragen und neue diagnostische und therapeutische Möglichkeiten eröffnet.
Die Computertomografie (CT) ist die weltweit am weitesten verfügbare Methode zur bildgebenden
Diagnostik beim Schlaganfall. Ihre entscheidende Bedeutung liegt im Ausschluss bzw.
Nachweis intrakranieller Blutungen. Damit ermöglicht sie die Indikationsstellung zur
intravenösen Thrombolyse. Darüber hinaus lassen sich in der CT in vielen Fällen bereits
innerhalb der ersten Stunden nach Schlaganfall sogenannte Ischämiefrühzeichen identifizieren,
die differentialtherapeutische und prognostische Bedeutung haben. Die multiparametrische
MRT mit diffusionsgewichteter Bildgebung, Perfusionsbildgebung, MR-Angiografie und
T2*-gewichteter Bildgebung ist ebenso sensitiv in der Diagnostik intrakranieller Blutungen
und liefert darüber hinaus Informationen über das Ausmaß der Ischämie, der Hypoperfusion
und den Gefäßstatus. Sie ermöglicht die Darstellung von Risikogewebe als Grundlage
für eine Thrombolyse jenseits von 3 Stunden. Die multiparametrische CT mit Perfusions-CT
und CT-Angiografie bietet wahrscheinlich vergleichbare Informationen, ist jedoch weniger
sensitiv für kleine Infarkte. Neurosonologische Methoden ermöglichen eine Darstellung
von arteriosklerotischen und nicht arteriosklerotischen Stenosen und Verschlüssen
extrakranieller Hirngefäße. Transkranielle Untersuchungen können „online” Aufschluss
geben über Verschlüsse, Rekanalisationen und Reokklusionen der kaliberstarken Hirnbasisarterien
einschließlich kollateraler Versorgungswege. Die Positronenemissionstomografie (PET)
hat entscheidend zur Entwicklung der pathophysiologischen Modelle der zerebralen Ischämie
beigetragen und dient insbesondere als Goldstandard zur Kalibrierung der Untersuchungen
mit multiparametrischer CT und MRT. Es ist davon auszugehen, dass die erweiterte Bildgebung
mit MRT und CT in Zukunft eine zunehmende Rolle in der Steuerung der Akutbehandlung
wie auch in klinischen Studien zur akuten Schlaganfallbehandlung spielen wird. Abschließend
werden Empfehlungen für die Bildgebung beim akuten Schlaganfall gegeben.
Abstract
For the past decades, new technical developments in brain imaging have greatly contributed
to a better understanding of the pathophysiology of acute stroke und have paved the
way for new possibilities in the diagnosis and treatment of acute stroke. Brain imaging
provides indispensable information for a specific and effective management of acute
stroke patients. Non-contrast CT is the most widely available technique and has its
major impact in the diagnosis or exclusion of intracranial hemorrhage. In addition,
early ischaemic signs can be identified on CT in a large number of patients already
within the first hours of stroke. Non-contrast CT is the only imaging modality that
is required prior to treatment with intravenous thrombolysis. Multiparametric stroke
MRI including diffusion-weighted imaging, perfusion imaging, MR angiography and T2*-weighted
imaging also detects intracranial haemorrhage with high sensitivity, and provides
additional information on the extent of the ischaemic lesion, hypoperfused tissue
and on the vessel status. Stroke MRI allows the identification of tissue at risk of
infarction, which is the target for reperfusion therapies beyond the 3-hour time window.
Multiparametric CT combining perfusion CT and CT angiography likely provides comparable
information. Doppler and duplex sonography is a reliable method to screen for pathologies
of the extracranial arteries. Transcranial sonography additionally enables one to
assess large intracranial vessels in the majority of patients. For the future, multiparametric
brain imaging with modern CT or MRI techniques is expected to play an increasing role
in the management of acute stroke in the routine clinical setting, as well as in clinical
trials.
Schlüsselwörter
Schlaganfall - Bildgebung - Computertomografie - Magnetresonanztomografie
Keywords
stroke - imaging - computed tomography - magnetic resonance imaging
Literatur
1
Guidelines for management of ischaemic stroke and transient ischaemic attack.
Cerebrovasc Dis.
2008;
25
457-507
2
Adams Jr H P, del Zoppo G, Alberts M J. et al .
Guidelines for the early management of adults with ischemic stroke: a guideline from
the American Heart Association / American Stroke Association Stroke Council, Clinical
Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic
Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary
Working Groups: the American Academy of Neurology affirms the value of this guideline
as an educational tool for neurologists.
Stroke.
2007;
38
1655-1711
3
Thomalla G, Ringleb P, Kohrmann M. et al .
Patientenauswahl zur Thrombolyse mittels Perfusions- und Diffusions-MRT. [Patient
selection for thrombolysis using perfusion and diffusion MRI: An overview.]
Nervenarzt.
2009;
80
119-129
4
Hjort N, Butcher K, Davis S M. et al .
Magnetic resonance imaging criteria for thrombolysis in acute cerebral infarct.
Stroke.
2005;
36
388-397, Epub 2004 Dec 23
5
Hacke W, Furlan A. for the DIAS-2 Investigators .
Results from the phase III study of Desmoteplase in acute ischemi stroke trial 2 (DIAS
2).
Cerebrovasc Dis.
2007;
23
54
6
Kohrmann M, Juttler E, Huttner H B. et al .
Acute Stroke Imaging for Thrombolytic Therapy – An Update.
Cerebrovasc Dis.
2007;
24
161-169
7
Kidwell C S, Wintermark M.
Imaging of intracranial haemorrhage.
Lancet Neurol.
2008;
7
256-267
8
Parizel P M, Makkat S, Van Miert E. et al .
Intracranial hemorrhage: principles of CT and MRI interpretation.
Eur Radiol.
2001;
11
1770-1783
9
Patel M R, Edelman R R, Warach S.
Detection of hyperacute primary intraparenchymal hemorrhage by magnetic resonance
imaging.
Stroke.
1996;
27
2321-2324
10
Schellinger P D, Jansen O, Fiebach J B. et al .
A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral
hemorrhage.
Stroke.
1999;
30
765-768
11
Fiebach J B, Schellinger P D, Gass A. et al .
Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage:
a multicenter study on the validity of stroke imaging.
Stroke.
2004;
35
502-506, Epub 2004 Jan 22
12
Kidwell C S, Chalela J A, Saver J L. et al .
Comparison of MRI and CT for detection of acute intracerebral hemorrhage.
JAMA.
2004;
292
1823-1830
13
Packard A S, Kase C S, Aly A S. et al .
„Computed tomography-negative” intracerebral hemorrhage: case report and implications
for management.
Arch Neurol.
2003;
60
1156-1159
14
Chalela J A, Kidwell C S, Nentwich L M. et al .
Magnetic resonance imaging and computed tomography in emergency assessment of patients
with suspected acute stroke: a prospective comparison.
Lancet.
2007;
369
293-298
15 Diener H C, Putzki N H. Leitlinien für Diagnostik und Therapie in der Neurologie.
Kommission „Leitlinien” der Deutschen Gesellschaft für Neurologie. ed 4., überarb.
Aufl. Stuttgart, New York; Georg Thieme Verlag 2008
16
Tissue plasminogen activator for acute ischemic stroke .
The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group.
N Engl J Med.
1995;
333
1581-1587
17
Clark W M, Albers G W, Madden K P. et al .
The rtPA (alteplase) 0- to 6-hour acute stroke trial, part A (A0276g): results of
a double-blind, placebo-controlled, multicenter study. Thrombolytic therapy in acute
ischemic stroke study investigators.
Stroke.
2000;
31
811-816
18
Clark W M, Wissman S, Albers G W. et al .
Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to
5 hours after symptom onset. The ATLANTIS Study: a randomized controlled trial. Alteplase
Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke.
JAMA.
1999;
282
2019-2026
19
Hacke W, Kaste M, Bluhmki E. et al .
Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke.
N Engl J Med.
2008;
359
1317-1329
20
Hacke W, Kaste M, Fieschi C. et al .
Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric
stroke. The European Cooperative Acute Stroke Study (ECASS).
JAMA.
1995;
274
1017-1025
21
Hacke W, Kaste M, Fieschi C. et al .
Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous
alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute
Stroke Study Investigators.
Lancet.
1998;
352
1245-1251
22
Schuier F J, Hossmann K A.
Experimental brain infarcts in cats. II. Ischemic brain edema.
Stroke.
1980;
11
593-601
23
Watanabe O, West C R, Bremer A.
Experimental regional cerebral ischemia in the middle cerebral artery territory in
primates. Part 2: Effects on brain water and electrolytes in the early phase of MCA
stroke.
Stroke.
1977;
8
71-76
24
Kucinski T, Vaterlein O, Glauche V. et al .
Correlation of apparent diffusion coefficient and computed tomography density in acute
ischemic stroke.
Stroke.
2002;
33
1786-1791
25
Kucinski T, Majumder A, Knab R. et al .
Cerebral perfusion impairment correlates with the decrease of CT density in acute
ischaemic stroke.
Neuroradiology.
2004;
46
716-722
26
Kummer R von, Bourquain H, Bastianello S. et al .
Early prediction of irreversible brain damage after ischemic stroke at CT.
Radiology.
2001;
219
95-100
27
Kummer R von, Meyding-Lamade U, Forsting M. et al .
Sensitivity and prognostic value of early CT in occlusion of the middle cerebral artery
trunk.
AJNR Am J Neuroradiol.
1994;
15
9-15, discussion 16–18
28
Larrue V, Kummer R R von, Muller A. et al .
Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated
with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian
Acute Stroke Study (ECASS II).
Stroke.
2001;
32
438-441
29
Tanne D, Kasner S E, Demchuk A M. et al .
Markers of increased risk of intracerebral hemorrhage after intravenous recombinant
tissue plasminogen activator therapy for acute ischemic stroke in clinical practice:
the Multicenter rt-PA Stroke Survey.
Circulation.
2002;
105
1679-1685
30
Lyden P.
Early major ischemic changes on computed tomography should not preclude use of tissue
plasminogen activator.
Stroke.
2003;
34
821-822
31
Kummer R von.
Early major ischemic changes on computed tomography should preclude use of tissue
plasminogen activator.
Stroke.
2003;
34
820-821
32
Kummer R von, Allen K L, Holle R. et al .
Acute stroke: usefulness of early CT findings before thrombolytic therapy.
Radiology.
1997;
205
327-333
33
Patel S C, Levine S R, Tilley B C. et al .
Lack of clinical significance of early ischemic changes on computed tomography in
acute stroke.
JAMA.
2001;
286
2830-2838
34
Saur D, Kucinski T, Grzyska U. et al .
Sensitivity and interrater agreement of CT and diffusion-weighted MR imaging in hyperacute
stroke.
AJNR Am J Neuroradiol.
2003;
24
878-885
35
Wardlaw J M, Mielke O.
Early signs of brain infarction at CT: observer reliability and outcome after thrombolytic
treatment – systematic review.
Radiology.
2005;
235
444-453
36
Kummer R von.
Effect of training in reading CT scans on patient selection for ECASS II.
Neurology.
1998;
51
S50-52
37
Barber P A, Demchuk A M, Zhang J. et al .
Validity and reliability of a quantitative computed tomography score in predicting
outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta
Stroke Programme Early CT Score.
Lancet.
2000;
355
1670-1674
38
Na D G, Kim E Y, Ryoo J W. et al .
CT sign of brain swelling without concomitant parenchymal hypoattenuation: comparison
with diffusion- and perfusion-weighted MR imaging.
Radiology.
2005;
235
992-948
39
Tomsick T A, Brott T G, Chambers A A. et al .
Hyperdense middle cerebral artery sign on CT: efficacy in detecting middle cerebral
artery thrombosis.
AJNR Am J Neuroradiol.
1990;
11
473-477
40
Barber P A, Demchuk A M, Hill M D. et al .
The probability of middle cerebral artery MRA flow signal abnormality with quantified
CT ischaemic change: targets for future therapeutic studies.
J Neurol Neurosurg Psychiatry.
2004;
75
1426-1430
41
Wolpert S M, Bruckmann H, Greenlee R. et al .
Neuroradiologic evaluation of patients with acute stroke treated with recombinant
tissue plasminogen activator. The rt-PA Acute Stroke Study Group.
AJNR Am J Neuroradiol.
1993;
14
3-13
42
Muir K W, Buchan A, Kummer R von. et al .
Imaging of acute stroke.
Lancet Neurol.
2006;
5
755-768
43
Rother J.
CT and MRI in the diagnosis of acute stroke and their role in thrombolysis.
Thromb Res.
2001;
103
S125-133
44
Beaulieu C.
The basis of anisotropic water diffusion in the nervous system – a technical review.
NMR Biomed.
2002;
15
435-455
45
Sotak C H.
The role of diffusion tensor imaging in the evaluation of ischemic brain injury –
a review.
NMR Biomed.
2002;
15
561-569
46
Hoehn-Berlage M, Norris D G, Kohno K. et al .
Evolution of regional changes in apparent diffusion coefficient during focal ischemia
of rat brain: the relationship of quantitative diffusion NMR imaging to reduction
in cerebral blood flow and metabolic disturbances.
J Cereb Blood Flow Metab.
1995;
15
1002-1011
47
Moseley M E, Kucharczyk J, Mintorovitch J. et al .
Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic
susceptibility-enhanced MR imaging in cats.
AJNR Am J Neuroradiol.
1990;
11
423-429
48
Rother J, de Crespigny A J, D'Arceuil H. et al .
Recovery of apparent diffusion coefficient after ischemia-induced spreading depression
relates to cerebral perfusion gradient.
Stroke.
1996;
27
980-986, discussion 986–987
49
Fiebach J B, Schellinger P D, Jansen O. et al .
CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging
results in higher accuracy and lower interrater variability in the diagnosis of hyperacute
ischemic stroke.
Stroke.
2002;
33
2206-2210
50
Ostergaard L.
Principles of cerebral perfusion imaging by bolus tracking.
J Magn Reson Imaging.
2005;
22
710-717
51
Rosen B R, Belliveau J W, Vevea J M. et al .
Perfusion imaging with NMR contrast agents.
Magn Reson Med.
1990;
14
249-265
52
Astrup J, Siesjo B K, Symon L.
Thresholds in cerebral ischemia – the ischemic penumbra.
Stroke.
1981;
12
723-725
53
Baron J C, Rougemont D, Soussaline F. et al .
Local interrelationships of cerebral oxygen consumption and glucose utilization in
normal subjects and in ischemic stroke patients: a positron tomography study.
J Cereb Blood Flow Metab.
1984;
4
140-149
54
Heiss W D.
Flow thresholds of functional and morphological damage of brain tissue.
Stroke.
1983;
14
329-331
55
Baron J C, Kummer R von, del Zoppo G J.
Treatment of acute ischemic stroke. Challenging the concept of a rigid and universal
time window.
Stroke.
1995;
26
2219-2221
56
Schlaug G, Benfield A, Baird A E. et al .
The ischemic penumbra: operationally defined by diffusion and perfusion MRI.
Neurology.
1999;
53
1528-1537
57
Warach S.
Thrombolysis in stroke beyond three hours: Targeting patients with diffusion and perfusion
MRI.
Ann Neurol.
2002;
51
11-13
58
Fiehler J, Foth M, Kucinski T. et al .
Severe ADC decreases do not predict irreversible tissue damage in humans.
Stroke.
2002;
33
79-86
59
Fiehler J, Knudsen K, Kucinski T. et al .
Predictors of apparent diffusion coefficient normalization in stroke patients.
Stroke.
2004;
35
514-519
60
Kidwell C S, Alger J R, Saver J L.
Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal
magnetic resonance imaging.
Stroke.
2003;
34
2729-2735, Epub 2003 Oct 23
61
Heiss W D, Sobesky J, Hesselmann V.
Identifying thresholds for penumbra and irreversible tissue damage.
Stroke.
2004;
35
2671-2674
62
Sobesky J, Zaro Weber O, Lehnhardt F G. et al .
Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission
tomography in early ischemic stroke.
Stroke.
2005;
36
980-985
63
Sobesky J, Zaro Weber O, Lehnhardt F G. et al .
Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted
magnetic resonance imaging and positron emission tomography in acute ischemic stroke.
Stroke.
2004;
35
2843-2847
64
Zaro-Weber O, Moeller-Hartmann W, Heiss W D. et al .
The Performance of MRI-Based Cerebral Blood Flow Measurements in Acute and Subacute
Stroke Compared With 15O-Water Positron Emission Tomography. Identification of Penumbral
Flow.
Stroke.
2009;
40
2413-2421
65
Kakuda W, Lansberg M G, Thijs V N. et al .
Optimal definition for PWI / DWI mismatch in acute ischemic stroke patients.
J Cereb Blood Flow Metab.
2008;
28
887-891
66
Olivot J M, Mlynash M, Thijs V N. et al .
Optimal Tmax threshold for predicting penumbral tissue in acute stroke.
Stroke.
2009;
40
469-475
67
Wintermark M, Albers G W, Alexandrov A V. et al .
Acute stroke imaging research roadmap.
Stroke.
2008;
39
1621-1628
68
Jansen O, Schellinger P, Fiebach J. et al .
Early recanalisation in acute ischaemic stroke saves tissue at risk defined by MRI.
Lancet.
1999;
353
2036-2037
69
Parsons M W, Barber P A, Chalk J. et al .
Diffusion- and perfusion-weighted MRI response to thrombolysis in stroke.
Ann Neurol.
2002;
51
28-37
70
Schellinger P D, Jansen O, Fiebach J B. et al .
Monitoring intravenous recombinant tissue plasminogen activator thrombolysis for acute
ischemic stroke with diffusion and perfusion MRI.
Stroke.
2000;
31
1318-1328
71
Nighoghossian N, Hermier M, Adeleine P. et al .
Baseline magnetic resonance imaging parameters and stroke outcome in patients treated
by intravenous tissue plasminogen activator.
Stroke.
2003;
34
458-463
72
Kohrmann M, Juttler E, Fiebach J B. et al .
MRI versus CT-based thrombolysis treatment within and beyond the 3 h time window after
stroke onset: a cohort study.
Lancet Neurol.
2006;
5
661-667
73
Ribo M, Molina C A, Rovira A. et al .
Safety and Efficacy of Intravenous Tissue Plasminogen Activator Stroke Treatment in
the 3- to 6-Hour Window Using Multimodal Transcranial Doppler / MRI Selection Protocol.
Stroke.
2005;
36
602-606
74
Schellinger P D, Thomalla G, Fiehler J. et al .
MRI-based and CT-based thrombolytic therapy in acute stroke within and beyond established
time windows: an analysis of 1210 patients.
Stroke.
2007;
38
2640-2645
75
Thomalla G, Schwark C, Sobesky J. et al .
Outcome and symptomatic bleeding complications of intravenous thrombolysis within
6 hours in MRI-selected stroke patients: comparison of a German multicenter study
with the pooled data of ATLANTIS, ECASS, and NINDS tPA trials.
Stroke.
2006;
37
852-858
76
Caplan L R.
Stroke thrombolysis: slow progress.
Circulation.
2006;
114
187-190
77
Fisher M.
Is penumbral imaging useful for extending the treatment window for intravenous tissue
plasminogen activator?.
Ann Neurol.
2006;
60
499-501
78
Sacco R L, Chong J Y, Prabhakaran S. et al .
Experimental treatments for acute ischaemic stroke.
Lancet.
2007;
369
331-341
79
Weimar C, Diener H C.
What's new in stroke prevention and treatment.
Expert Rev Neurother.
2006;
6
185-193
80
Albers G W, Thijs V N, Wechsler L. et al .
Magnetic resonance imaging profiles predict clinical response to early reperfusion:
the diffusion and perfusion imaging evaluation for understanding stroke evolution
(DEFUSE) study.
Ann Neurol.
2006;
60
508-517
81
Davis S M, Donnan G A, Parsons M W. et al .
Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic
Evaluation Trial (EPITHET): a placebo-controlled randomised trial.
Lancet Neurol.
2008;
7
299-309
82
Furlan A J, Eyding D, Albers G W. et al .
Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety
and efficacy 3 to 9 hours after stroke onset.
Stroke.
2006;
37
1227-1231
83
Hacke W, Albers G, Al-Rawi Y. et al .
The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour
window acute stroke thrombolysis trial with intravenous desmoteplase.
Stroke.
2005;
36
66-73, Epub 2004 Nov 29
84
Hacke W, Furlan A J, Al-Rawi Y. et al .
Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion
weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind,
placebo-controlled study.
Lancet Neurol.
2009;
8
141-150
85
Singer O C, Humpich M C, Fiehler J. et al .
Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted
magnetic resonance imaging.
Ann Neurol.
2008;
63
52-60
86
Neumann-Haefelin T, Hoelig S, Berkefeld J. et al .
Leukoaraiosis is a risk factor for symptomatic intracerebral hemorrhage after thrombolysis
for acute stroke.
Stroke.
2006;
37
2463-2466
87
Palumbo V, Boulanger J M, Hill M D. et al .
Leukoaraiosis and intracerebral hemorrhage after thrombolysis in acute stroke.
Neurology.
2007;
68
1020-1024
88
Fiehler J, Albers G W, Boulanger J M. et al .
Bleeding risk analysis in stroke imaging before thrombolysis (BRASIL): pooled analysis
of T2*-weighted magnetic resonance imaging data from 570 patients.
Stroke.
2007;
38
2738-2744
89
Schellinger P D, Richter G, Kohrmann M. et al .
Noninvasive angiography (magnetic resonance and computed tomography) in the diagnosis
of ischemic cerebrovascular disease. Techniques and clinical applications.
Cerebrovasc Dis.
2007;
24 (Suppl. 1)
16-23
90
Tomandl B F, Klotz E, Handschu R. et al .
Comprehensive imaging of ischemic stroke with multisection CT.
Radiographics.
2003;
23
565-592
91
Schramm P, Schellinger P D, Fiebach J B. et al .
Comparison of CT and CT angiography source images with diffusion-weighted imaging
in patients with acute stroke within 6 hours after onset.
Stroke.
2002;
33
2426-2432
92
Koenig M, Klotz E, Luka B. et al .
Perfusion CT of the brain: diagnostic approach for early detection of ischemic stroke.
Radiology.
1998;
209
85-93
93
Nagata K, Asano T.
Functional image of dynamic computed tomography for the evaluation of cerebral hemodynamics.
Stroke.
1990;
21
882-889
94
Koenig M, Kraus M, Theek C. et al .
Quantitative assessment of the ischemic brain by means of perfusion-related parameters
derived from perfusion CT.
Stroke.
2001;
32
431-437
95
Wintermark M, Flanders A E, Velthuis B. et al .
Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic
curve analysis in 130 patients suspected of acute hemispheric stroke.
Stroke.
2006;
37
979-985
96
Eastwood J D, Lev M H, Wintermark M. et al .
Correlation of early dynamic CT perfusion imaging with whole-brain MR diffusion and
perfusion imaging in acute hemispheric stroke.
AJNR Am J Neuroradiol.
2003;
24
1869-1875
97
Wintermark M, Reichhart M, Cuisenaire O. et al .
Comparison of admission perfusion computed tomography and qualitative diffusion- and
perfusion-weighted magnetic resonance imaging in acute stroke patients.
Stroke.
2002;
33
2025-2031
98
Wintermark M, Meuli R, Browaeys P. et al .
Comparison of CT perfusion and angiography and MRI in selecting stroke patients for
acute treatment.
Neurology.
2007;
68
694-697
99
Kang D W, Chalela J A, Dunn W. et al .
MRI screening before standard tissue plasminogen activator therapy is feasible and
safe.
Stroke.
2005;
36
1939-1943
100
Earnshaw S R, Jackson D, Farkouh R. et al .
Cost-effectiveness of patient selection using penumbral-based MRI for intravenous
thrombolysis.
Stroke.
2009;
40
1710-1720
101 Gesellschaft für Qualitätssicherung Hessen. .Auswertung der Statistik für das
Jahr 2006. http://www.gqhnet.de/Projekte/Akut/Auswertungen/2005_schlaganfall_akut_.pdf
(access 27.6.2009)
102
Baumgartner R W, Mattle H P, Schroth G.
Assessment of ≥ 50 % and < 50 % intracranial stenoses by transcranial color-coded
duplex sonography.
Stroke.
1999;
30
87-92
103
Gerriets T, Goertler M, Stolz E. et al .
Feasibility and validity of transcranial duplex sonography in patients with acute
stroke.
J Neurol Neurosurg Psychiatry.
2002;
73
17-20
104
Jahromi A S, Cina C S, Liu Y. et al .
Sensitivity and specificity of color duplex ultrasound measurement in the estimation
of internal carotid artery stenosis: a systematic review and meta-analysis.
J Vasc Surg.
2005;
41
962-972
105
Seidel G, Kaps M, Gerriets T.
Potential and limitations of transcranial color-coded sonography in stroke patients.
Stroke.
1995;
26
2061-2066
106
Alexandrov A V, Demchuk A M, Felberg R A. et al .
High rate of complete recanalization and dramatic clinical recovery during tPA infusion
when continuously monitored with 2-MHz transcranial doppler monitoring.
Stroke.
2000;
31
610-614
107
Allendoerfer J, Goertler M, Reutern G M von.
Prognostic relevance of ultra-early doppler sonography in acute ischaemic stroke:
a prospective multicentre study.
Lancet Neurol.
2006;
5
835-840
108
Kaps M, Stolz E, Allendoerfer J.
Prognostic value of transcranial sonography in acute stroke patients.
Eur Neurol.
2008;
59 (Suppl. 1)
9-16
109
Stolz E, Cioli F, Allendoerfer J. et al .
Can early neurosonology predict outcome in acute stroke? a metaanalysis of prognostic
clinical effect sizes related to the vascular status.
Stroke.
2008;
39
3255-3261
110
Ribo M, Alvarez-Sabin J, Montaner J. et al .
Temporal profile of recanalization after intravenous tissue plasminogen activator:
selecting patients for rescue reperfusion techniques.
Stroke.
2006;
37
1000-1004
111
Cupini L M, Diomedi M, Placidi F. et al .
Cerebrovascular reactivity and subcortical infarctions.
Arch Neurol.
2001;
58
577-581
112
Markus H, Cullinane M.
Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients
with carotid artery stenosis and occlusion.
Brain.
2001;
124
457-467
113
Markus H S, Droste D W, Kaps M. et al .
Dual antiplatelet therapy with clopidogrel and aspirin in symptomatic carotid stenosis
evaluated using doppler embolic signal detection: the Clopidogrel and Aspirin for
Reduction of Emboli in Symptomatic Carotid Stenosis (CARESS) trial.
Circulation.
2005;
111
2233-2240
114
Eyding J, Krogias C, Schollhammer M. et al .
Contrast-enhanced ultrasonic parametric perfusion imaging detects dysfunctional tissue
at risk in acute MCA stroke.
J Cereb Blood Flow Metab.
2006;
26
576-582
115
Wiesmann M, Meyer K, Albers T. et al .
Parametric perfusion imaging with contrast-enhanced ultrasound in acute ischemic stroke.
Stroke.
2004;
35
508-513
116
Eckert B, Koch C, Thomalla G. et al .
Aggressive therapy with intravenous abciximab and intra-arterial rtPA and additional
PTA / stenting improves clinical outcome in acute vertebrobasilar occlusion: combined
local fibrinolysis and intravenous abciximab in acute vertebrobasilar stroke treatment
(FAST): results of a multicenter study.
Stroke.
2005;
36
1160-1165, Epub 2005 May 12
117
Lindsberg P J, Mattle H P.
Therapy of basilar artery occlusion: a systematic analysis comparing intra-arterial
and intravenous thrombolysis.
Stroke.
2006;
37
922-928
118
Nagel S, Schellinger P D, Hartmann M. et al .
Therapy of acute basilar artery occlusion: intraarterial thrombolysis alone vs bridging
therapy.
Stroke.
2009;
40
140-146
119
Arnold M, Schroth G, Nedeltchev K. et al .
Intra-arterial thrombolysis in 100 patients with acute stroke due to middle cerebral
artery occlusion.
Stroke.
2002;
33
1828-1833
120
Baron J C.
Mapping the ischaemic penumbra with PET: implications for acute stroke treatment.
Cerebrovasc Dis.
1999;
9
193-201
121
Heiss W D, Kracht L W, Thiel A. et al .
Penumbral probability thresholds of cortical flumazenil binding and blood flow predicting
tissue outcome in patients with cerebral ischaemia.
Brain.
2001;
124
20-29
122
Takasawa M, Jones P S, Guadagno J V. et al .
How reliable is perfusion MR in acute stroke? Validation and determination of the
penumbra threshold against quantitative PET.
Stroke.
2008;
39
870-877
123
Heiss W D, Podreka I.
Role of PET and SPECT in the assessment of ischemic cerebrovascular disease.
Cerebrovasc Brain Metab Rev.
1993;
5
235-263
124
Chavez J C, Zaleska M M, Wang X. et al .
Multimodal magnetic resonance imaging for assessing evolution of ischemic penumbra:
a key translational medicine strategy to manage the risk of developing novel therapies
for acute ischemic stroke.
J Cereb Blood Flow Metab.
2009;
29
217-219
125
Wu O, Christensen S, Hjort N. et al .
Characterizing physiological heterogeneity of infarction risk in acute human ischaemic
stroke using MRI.
Brain.
2006;
129
2384-2393
126
Serena J, Davalos A, Segura T. et al .
Stroke on awakening: looking for a more rational management.
Cerebrovasc Dis.
2003;
16
128-133
127
Thomalla G, Rossbach P, Rosenkranz M. et al .
Negative FLAIR imaging identifies acute ischemic stroke ≤ 3 hours.
Ann Neurol.
in press;
128
Cho A H, Sohn S I, Han M K. et al .
Safety and efficacy of MRI-based thrombolysis in unclear-onset stroke. A preliminary
report.
Cerebrovasc Dis.
2008;
25
572-579
129
Hellier K D, Hampton J L, Guadagno J V. et al .
Perfusion CT helps decision making for thrombolysis when there is no clear time of
onset.
J Neurol Neurosurg Psychiatry.
2006;
77
417-419
130
Iosif C, Oppenheim C, Trystram D. et al .
MR imaging-based decision in thrombolytic therapy for stroke on awakening: report
of 2 cases.
AJNR Am J Neuroradiol.
2008;
29
1314-1316
131
Munoz Maniega S, Cvoro V, Chappell F M. et al .
Changes in NAA and lactate following ischemic stroke: a serial MR spectroscopic imaging
study.
Neurology.
2008;
71
1993-1999
132
Geisler B S, Brandhoff F, Fiehler J. et al .
Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in
acute stroke patients.
Stroke.
2006;
37
1778-1784
133
Siemonsen S, Fitting T, Thomalla G. et al .
T2' imaging predicts infarct growth beyond the acute diffusion-weighted imaging lesion
in acute stroke.
Radiology.
2008;
248
979-986
134
Lee J I, Wittsack H J, Christaras A. et al .
Normalization of brain tissue lactate after hyperbaric oxygen therapy in a progressive
stroke patient.
Cerebrovasc Dis.
2008;
26
447-448
135
Stengel A, Neumann-Haefelin T, Singer O C. et al .
Multiple spin-echo spectroscopic imaging for rapid quantitative assessment of N-acetylaspartate
and lactate in acute stroke.
Magn Reson Med.
2004;
52
228-238
136
Hampson M, Peterson B S, Skudlarski P. et al .
Detection of functional connectivity using temporal correlations in MR images.
Hum Brain Mapp.
2002;
15
247-262
137
Kunimatsu A, Aoki S, Masutani Y. et al .
Three-dimensional white matter tractography by diffusion tensor imaging in ischaemic
stroke involving the corticospinal tract.
Neuroradiology.
2003;
45
532-535
138
Lie C, Hirsch J G, Rossmanith C. et al .
Clinicotopographical correlation of corticospinal tract stroke: a color-coded diffusion
tensor imaging study.
Stroke.
2004;
35
86-92
139
Thomalla G, Glauche V, Koch M A. et al .
Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract
after ischemic stroke.
Neuroimage.
2004;
22
1767-1774
140
Alexandrov A V, Molina C A, Grotta J C. et al .
Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke.
N Engl J Med.
2004;
351
2170-2178
141
Molina C A, Ribo M, Rubiera M. et al .
Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound
monitoring in stroke patients treated with intravenous tissue plasminogen activator.
Stroke.
2006;
37
425-429
142
Daffertshofer M, Gass A, Ringleb P. et al .
Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: increased
risk of hemorrhage with combined ultrasound and tissue plasminogen activator: results
of a phase II clinical trial.
Stroke.
2005;
36
1441-1446
Dr. med. Götz Thomalla
Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum
Hamburg-Eppendorf
Martinistr. 52
20246 Hamburg
eMail: thomalla@uke.uni-hamburg.de