Subscribe to RSS
DOI: 10.1055/s-0029-1220430
© Georg Thieme Verlag KG Stuttgart · New York
Bildgebung beim Schlaganfall – eine Übersicht und Empfehlungen des Kompetenznetzes Schlaganfall
Imaging in Stroke – An Overview and Recommendations from the German Competence Network StrokePublication History
Publication Date:
09 September 2009 (online)
Zusammenfassung
Die bildgebende Diagnostik liefert die Grundlagen für eine spezifische und damit effektive Therapie des Schlaganfalls. Fortschritte in der Technik bildgebender Verfahren haben in den letzten Jahrzehnten viel zum Verständnis der Pathophysiologie der zerebralen Ischämie beigetragen und neue diagnostische und therapeutische Möglichkeiten eröffnet. Die Computertomografie (CT) ist die weltweit am weitesten verfügbare Methode zur bildgebenden Diagnostik beim Schlaganfall. Ihre entscheidende Bedeutung liegt im Ausschluss bzw. Nachweis intrakranieller Blutungen. Damit ermöglicht sie die Indikationsstellung zur intravenösen Thrombolyse. Darüber hinaus lassen sich in der CT in vielen Fällen bereits innerhalb der ersten Stunden nach Schlaganfall sogenannte Ischämiefrühzeichen identifizieren, die differentialtherapeutische und prognostische Bedeutung haben. Die multiparametrische MRT mit diffusionsgewichteter Bildgebung, Perfusionsbildgebung, MR-Angiografie und T2*-gewichteter Bildgebung ist ebenso sensitiv in der Diagnostik intrakranieller Blutungen und liefert darüber hinaus Informationen über das Ausmaß der Ischämie, der Hypoperfusion und den Gefäßstatus. Sie ermöglicht die Darstellung von Risikogewebe als Grundlage für eine Thrombolyse jenseits von 3 Stunden. Die multiparametrische CT mit Perfusions-CT und CT-Angiografie bietet wahrscheinlich vergleichbare Informationen, ist jedoch weniger sensitiv für kleine Infarkte. Neurosonologische Methoden ermöglichen eine Darstellung von arteriosklerotischen und nicht arteriosklerotischen Stenosen und Verschlüssen extrakranieller Hirngefäße. Transkranielle Untersuchungen können „online” Aufschluss geben über Verschlüsse, Rekanalisationen und Reokklusionen der kaliberstarken Hirnbasisarterien einschließlich kollateraler Versorgungswege. Die Positronenemissionstomografie (PET) hat entscheidend zur Entwicklung der pathophysiologischen Modelle der zerebralen Ischämie beigetragen und dient insbesondere als Goldstandard zur Kalibrierung der Untersuchungen mit multiparametrischer CT und MRT. Es ist davon auszugehen, dass die erweiterte Bildgebung mit MRT und CT in Zukunft eine zunehmende Rolle in der Steuerung der Akutbehandlung wie auch in klinischen Studien zur akuten Schlaganfallbehandlung spielen wird. Abschließend werden Empfehlungen für die Bildgebung beim akuten Schlaganfall gegeben.
Abstract
For the past decades, new technical developments in brain imaging have greatly contributed to a better understanding of the pathophysiology of acute stroke und have paved the way for new possibilities in the diagnosis and treatment of acute stroke. Brain imaging provides indispensable information for a specific and effective management of acute stroke patients. Non-contrast CT is the most widely available technique and has its major impact in the diagnosis or exclusion of intracranial hemorrhage. In addition, early ischaemic signs can be identified on CT in a large number of patients already within the first hours of stroke. Non-contrast CT is the only imaging modality that is required prior to treatment with intravenous thrombolysis. Multiparametric stroke MRI including diffusion-weighted imaging, perfusion imaging, MR angiography and T2*-weighted imaging also detects intracranial haemorrhage with high sensitivity, and provides additional information on the extent of the ischaemic lesion, hypoperfused tissue and on the vessel status. Stroke MRI allows the identification of tissue at risk of infarction, which is the target for reperfusion therapies beyond the 3-hour time window. Multiparametric CT combining perfusion CT and CT angiography likely provides comparable information. Doppler and duplex sonography is a reliable method to screen for pathologies of the extracranial arteries. Transcranial sonography additionally enables one to assess large intracranial vessels in the majority of patients. For the future, multiparametric brain imaging with modern CT or MRI techniques is expected to play an increasing role in the management of acute stroke in the routine clinical setting, as well as in clinical trials.
Schlüsselwörter
Schlaganfall - Bildgebung - Computertomografie - Magnetresonanztomografie
Keywords
stroke - imaging - computed tomography - magnetic resonance imaging
Literatur
- 1 Guidelines for management of ischaemic stroke and transient ischaemic attack. Cerebrovasc Dis. 2008; 25 457-507
- 2 Adams Jr H P, del Zoppo G, Alberts M J. et al . Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association / American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke. 2007; 38 1655-1711
- 3 Thomalla G, Ringleb P, Kohrmann M. et al . Patientenauswahl zur Thrombolyse mittels Perfusions- und Diffusions-MRT. [Patient selection for thrombolysis using perfusion and diffusion MRI: An overview.] Nervenarzt. 2009; 80 119-129
- 4 Hjort N, Butcher K, Davis S M. et al . Magnetic resonance imaging criteria for thrombolysis in acute cerebral infarct. Stroke. 2005; 36 388-397, Epub 2004 Dec 23
- 5 Hacke W, Furlan A. for the DIAS-2 Investigators . Results from the phase III study of Desmoteplase in acute ischemi stroke trial 2 (DIAS 2). Cerebrovasc Dis. 2007; 23 54
- 6 Kohrmann M, Juttler E, Huttner H B. et al . Acute Stroke Imaging for Thrombolytic Therapy – An Update. Cerebrovasc Dis. 2007; 24 161-169
- 7 Kidwell C S, Wintermark M. Imaging of intracranial haemorrhage. Lancet Neurol. 2008; 7 256-267
- 8 Parizel P M, Makkat S, Van Miert E. et al . Intracranial hemorrhage: principles of CT and MRI interpretation. Eur Radiol. 2001; 11 1770-1783
- 9 Patel M R, Edelman R R, Warach S. Detection of hyperacute primary intraparenchymal hemorrhage by magnetic resonance imaging. Stroke. 1996; 27 2321-2324
- 10 Schellinger P D, Jansen O, Fiebach J B. et al . A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral hemorrhage. Stroke. 1999; 30 765-768
- 11 Fiebach J B, Schellinger P D, Gass A. et al . Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging. Stroke. 2004; 35 502-506, Epub 2004 Jan 22
- 12 Kidwell C S, Chalela J A, Saver J L. et al . Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA. 2004; 292 1823-1830
- 13 Packard A S, Kase C S, Aly A S. et al . „Computed tomography-negative” intracerebral hemorrhage: case report and implications for management. Arch Neurol. 2003; 60 1156-1159
- 14 Chalela J A, Kidwell C S, Nentwich L M. et al . Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet. 2007; 369 293-298
- 15 Diener H C, Putzki N H. Leitlinien für Diagnostik und Therapie in der Neurologie. Kommission „Leitlinien” der Deutschen Gesellschaft für Neurologie. ed 4., überarb. Aufl. Stuttgart, New York; Georg Thieme Verlag 2008
- 16 Tissue plasminogen activator for acute ischemic stroke . The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med. 1995; 333 1581-1587
- 17 Clark W M, Albers G W, Madden K P. et al . The rtPA (alteplase) 0- to 6-hour acute stroke trial, part A (A0276g): results of a double-blind, placebo-controlled, multicenter study. Thrombolytic therapy in acute ischemic stroke study investigators. Stroke. 2000; 31 811-816
- 18 Clark W M, Wissman S, Albers G W. et al . Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to 5 hours after symptom onset. The ATLANTIS Study: a randomized controlled trial. Alteplase Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke. JAMA. 1999; 282 2019-2026
- 19 Hacke W, Kaste M, Bluhmki E. et al . Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008; 359 1317-1329
- 20 Hacke W, Kaste M, Fieschi C. et al . Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA. 1995; 274 1017-1025
- 21 Hacke W, Kaste M, Fieschi C. et al . Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet. 1998; 352 1245-1251
- 22 Schuier F J, Hossmann K A. Experimental brain infarcts in cats. II. Ischemic brain edema. Stroke. 1980; 11 593-601
- 23 Watanabe O, West C R, Bremer A. Experimental regional cerebral ischemia in the middle cerebral artery territory in primates. Part 2: Effects on brain water and electrolytes in the early phase of MCA stroke. Stroke. 1977; 8 71-76
- 24 Kucinski T, Vaterlein O, Glauche V. et al . Correlation of apparent diffusion coefficient and computed tomography density in acute ischemic stroke. Stroke. 2002; 33 1786-1791
- 25 Kucinski T, Majumder A, Knab R. et al . Cerebral perfusion impairment correlates with the decrease of CT density in acute ischaemic stroke. Neuroradiology. 2004; 46 716-722
- 26 Kummer R von, Bourquain H, Bastianello S. et al . Early prediction of irreversible brain damage after ischemic stroke at CT. Radiology. 2001; 219 95-100
- 27 Kummer R von, Meyding-Lamade U, Forsting M. et al . Sensitivity and prognostic value of early CT in occlusion of the middle cerebral artery trunk. AJNR Am J Neuroradiol. 1994; 15 9-15, discussion 16–18
- 28 Larrue V, Kummer R R von, Muller A. et al . Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke. 2001; 32 438-441
- 29 Tanne D, Kasner S E, Demchuk A M. et al . Markers of increased risk of intracerebral hemorrhage after intravenous recombinant tissue plasminogen activator therapy for acute ischemic stroke in clinical practice: the Multicenter rt-PA Stroke Survey. Circulation. 2002; 105 1679-1685
- 30 Lyden P. Early major ischemic changes on computed tomography should not preclude use of tissue plasminogen activator. Stroke. 2003; 34 821-822
- 31 Kummer R von. Early major ischemic changes on computed tomography should preclude use of tissue plasminogen activator. Stroke. 2003; 34 820-821
- 32 Kummer R von, Allen K L, Holle R. et al . Acute stroke: usefulness of early CT findings before thrombolytic therapy. Radiology. 1997; 205 327-333
- 33 Patel S C, Levine S R, Tilley B C. et al . Lack of clinical significance of early ischemic changes on computed tomography in acute stroke. JAMA. 2001; 286 2830-2838
- 34 Saur D, Kucinski T, Grzyska U. et al . Sensitivity and interrater agreement of CT and diffusion-weighted MR imaging in hyperacute stroke. AJNR Am J Neuroradiol. 2003; 24 878-885
- 35 Wardlaw J M, Mielke O. Early signs of brain infarction at CT: observer reliability and outcome after thrombolytic treatment – systematic review. Radiology. 2005; 235 444-453
- 36 Kummer R von. Effect of training in reading CT scans on patient selection for ECASS II. Neurology. 1998; 51 S50-52
- 37 Barber P A, Demchuk A M, Zhang J. et al . Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet. 2000; 355 1670-1674
- 38 Na D G, Kim E Y, Ryoo J W. et al . CT sign of brain swelling without concomitant parenchymal hypoattenuation: comparison with diffusion- and perfusion-weighted MR imaging. Radiology. 2005; 235 992-948
- 39 Tomsick T A, Brott T G, Chambers A A. et al . Hyperdense middle cerebral artery sign on CT: efficacy in detecting middle cerebral artery thrombosis. AJNR Am J Neuroradiol. 1990; 11 473-477
- 40 Barber P A, Demchuk A M, Hill M D. et al . The probability of middle cerebral artery MRA flow signal abnormality with quantified CT ischaemic change: targets for future therapeutic studies. J Neurol Neurosurg Psychiatry. 2004; 75 1426-1430
- 41 Wolpert S M, Bruckmann H, Greenlee R. et al . Neuroradiologic evaluation of patients with acute stroke treated with recombinant tissue plasminogen activator. The rt-PA Acute Stroke Study Group. AJNR Am J Neuroradiol. 1993; 14 3-13
- 42 Muir K W, Buchan A, Kummer R von. et al . Imaging of acute stroke. Lancet Neurol. 2006; 5 755-768
- 43 Rother J. CT and MRI in the diagnosis of acute stroke and their role in thrombolysis. Thromb Res. 2001; 103 S125-133
- 44 Beaulieu C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 2002; 15 435-455
- 45 Sotak C H. The role of diffusion tensor imaging in the evaluation of ischemic brain injury – a review. NMR Biomed. 2002; 15 561-569
- 46 Hoehn-Berlage M, Norris D G, Kohno K. et al . Evolution of regional changes in apparent diffusion coefficient during focal ischemia of rat brain: the relationship of quantitative diffusion NMR imaging to reduction in cerebral blood flow and metabolic disturbances. J Cereb Blood Flow Metab. 1995; 15 1002-1011
- 47 Moseley M E, Kucharczyk J, Mintorovitch J. et al . Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am J Neuroradiol. 1990; 11 423-429
- 48 Rother J, de Crespigny A J, D'Arceuil H. et al . Recovery of apparent diffusion coefficient after ischemia-induced spreading depression relates to cerebral perfusion gradient. Stroke. 1996; 27 980-986, discussion 986–987
- 49 Fiebach J B, Schellinger P D, Jansen O. et al . CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke. 2002; 33 2206-2210
- 50 Ostergaard L. Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging. 2005; 22 710-717
- 51 Rosen B R, Belliveau J W, Vevea J M. et al . Perfusion imaging with NMR contrast agents. Magn Reson Med. 1990; 14 249-265
- 52 Astrup J, Siesjo B K, Symon L. Thresholds in cerebral ischemia – the ischemic penumbra. Stroke. 1981; 12 723-725
- 53 Baron J C, Rougemont D, Soussaline F. et al . Local interrelationships of cerebral oxygen consumption and glucose utilization in normal subjects and in ischemic stroke patients: a positron tomography study. J Cereb Blood Flow Metab. 1984; 4 140-149
- 54 Heiss W D. Flow thresholds of functional and morphological damage of brain tissue. Stroke. 1983; 14 329-331
- 55 Baron J C, Kummer R von, del Zoppo G J. Treatment of acute ischemic stroke. Challenging the concept of a rigid and universal time window. Stroke. 1995; 26 2219-2221
- 56 Schlaug G, Benfield A, Baird A E. et al . The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology. 1999; 53 1528-1537
- 57 Warach S. Thrombolysis in stroke beyond three hours: Targeting patients with diffusion and perfusion MRI. Ann Neurol. 2002; 51 11-13
- 58 Fiehler J, Foth M, Kucinski T. et al . Severe ADC decreases do not predict irreversible tissue damage in humans. Stroke. 2002; 33 79-86
- 59 Fiehler J, Knudsen K, Kucinski T. et al . Predictors of apparent diffusion coefficient normalization in stroke patients. Stroke. 2004; 35 514-519
- 60 Kidwell C S, Alger J R, Saver J L. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke. 2003; 34 2729-2735, Epub 2003 Oct 23
- 61 Heiss W D, Sobesky J, Hesselmann V. Identifying thresholds for penumbra and irreversible tissue damage. Stroke. 2004; 35 2671-2674
- 62 Sobesky J, Zaro Weber O, Lehnhardt F G. et al . Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke. 2005; 36 980-985
- 63 Sobesky J, Zaro Weber O, Lehnhardt F G. et al . Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke. Stroke. 2004; 35 2843-2847
- 64 Zaro-Weber O, Moeller-Hartmann W, Heiss W D. et al . The Performance of MRI-Based Cerebral Blood Flow Measurements in Acute and Subacute Stroke Compared With 15O-Water Positron Emission Tomography. Identification of Penumbral Flow. Stroke. 2009; 40 2413-2421
- 65 Kakuda W, Lansberg M G, Thijs V N. et al . Optimal definition for PWI / DWI mismatch in acute ischemic stroke patients. J Cereb Blood Flow Metab. 2008; 28 887-891
- 66 Olivot J M, Mlynash M, Thijs V N. et al . Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke. 2009; 40 469-475
- 67 Wintermark M, Albers G W, Alexandrov A V. et al . Acute stroke imaging research roadmap. Stroke. 2008; 39 1621-1628
- 68 Jansen O, Schellinger P, Fiebach J. et al . Early recanalisation in acute ischaemic stroke saves tissue at risk defined by MRI. Lancet. 1999; 353 2036-2037
- 69 Parsons M W, Barber P A, Chalk J. et al . Diffusion- and perfusion-weighted MRI response to thrombolysis in stroke. Ann Neurol. 2002; 51 28-37
- 70 Schellinger P D, Jansen O, Fiebach J B. et al . Monitoring intravenous recombinant tissue plasminogen activator thrombolysis for acute ischemic stroke with diffusion and perfusion MRI. Stroke. 2000; 31 1318-1328
- 71 Nighoghossian N, Hermier M, Adeleine P. et al . Baseline magnetic resonance imaging parameters and stroke outcome in patients treated by intravenous tissue plasminogen activator. Stroke. 2003; 34 458-463
- 72 Kohrmann M, Juttler E, Fiebach J B. et al . MRI versus CT-based thrombolysis treatment within and beyond the 3 h time window after stroke onset: a cohort study. Lancet Neurol. 2006; 5 661-667
- 73 Ribo M, Molina C A, Rovira A. et al . Safety and Efficacy of Intravenous Tissue Plasminogen Activator Stroke Treatment in the 3- to 6-Hour Window Using Multimodal Transcranial Doppler / MRI Selection Protocol. Stroke. 2005; 36 602-606
- 74 Schellinger P D, Thomalla G, Fiehler J. et al . MRI-based and CT-based thrombolytic therapy in acute stroke within and beyond established time windows: an analysis of 1210 patients. Stroke. 2007; 38 2640-2645
- 75 Thomalla G, Schwark C, Sobesky J. et al . Outcome and symptomatic bleeding complications of intravenous thrombolysis within 6 hours in MRI-selected stroke patients: comparison of a German multicenter study with the pooled data of ATLANTIS, ECASS, and NINDS tPA trials. Stroke. 2006; 37 852-858
- 76 Caplan L R. Stroke thrombolysis: slow progress. Circulation. 2006; 114 187-190
- 77 Fisher M. Is penumbral imaging useful for extending the treatment window for intravenous tissue plasminogen activator?. Ann Neurol. 2006; 60 499-501
- 78 Sacco R L, Chong J Y, Prabhakaran S. et al . Experimental treatments for acute ischaemic stroke. Lancet. 2007; 369 331-341
- 79 Weimar C, Diener H C. What's new in stroke prevention and treatment. Expert Rev Neurother. 2006; 6 185-193
- 80 Albers G W, Thijs V N, Wechsler L. et al . Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol. 2006; 60 508-517
- 81 Davis S M, Donnan G A, Parsons M W. et al . Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol. 2008; 7 299-309
- 82 Furlan A J, Eyding D, Albers G W. et al . Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke. 2006; 37 1227-1231
- 83 Hacke W, Albers G, Al-Rawi Y. et al . The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke. 2005; 36 66-73, Epub 2004 Nov 29
- 84 Hacke W, Furlan A J, Al-Rawi Y. et al . Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol. 2009; 8 141-150
- 85 Singer O C, Humpich M C, Fiehler J. et al . Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging. Ann Neurol. 2008; 63 52-60
- 86 Neumann-Haefelin T, Hoelig S, Berkefeld J. et al . Leukoaraiosis is a risk factor for symptomatic intracerebral hemorrhage after thrombolysis for acute stroke. Stroke. 2006; 37 2463-2466
- 87 Palumbo V, Boulanger J M, Hill M D. et al . Leukoaraiosis and intracerebral hemorrhage after thrombolysis in acute stroke. Neurology. 2007; 68 1020-1024
- 88 Fiehler J, Albers G W, Boulanger J M. et al . Bleeding risk analysis in stroke imaging before thrombolysis (BRASIL): pooled analysis of T2*-weighted magnetic resonance imaging data from 570 patients. Stroke. 2007; 38 2738-2744
- 89 Schellinger P D, Richter G, Kohrmann M. et al . Noninvasive angiography (magnetic resonance and computed tomography) in the diagnosis of ischemic cerebrovascular disease. Techniques and clinical applications. Cerebrovasc Dis. 2007; 24 (Suppl. 1) 16-23
- 90 Tomandl B F, Klotz E, Handschu R. et al . Comprehensive imaging of ischemic stroke with multisection CT. Radiographics. 2003; 23 565-592
- 91 Schramm P, Schellinger P D, Fiebach J B. et al . Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke. 2002; 33 2426-2432
- 92 Koenig M, Klotz E, Luka B. et al . Perfusion CT of the brain: diagnostic approach for early detection of ischemic stroke. Radiology. 1998; 209 85-93
- 93 Nagata K, Asano T. Functional image of dynamic computed tomography for the evaluation of cerebral hemodynamics. Stroke. 1990; 21 882-889
- 94 Koenig M, Kraus M, Theek C. et al . Quantitative assessment of the ischemic brain by means of perfusion-related parameters derived from perfusion CT. Stroke. 2001; 32 431-437
- 95 Wintermark M, Flanders A E, Velthuis B. et al . Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke. 2006; 37 979-985
- 96 Eastwood J D, Lev M H, Wintermark M. et al . Correlation of early dynamic CT perfusion imaging with whole-brain MR diffusion and perfusion imaging in acute hemispheric stroke. AJNR Am J Neuroradiol. 2003; 24 1869-1875
- 97 Wintermark M, Reichhart M, Cuisenaire O. et al . Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke. 2002; 33 2025-2031
- 98 Wintermark M, Meuli R, Browaeys P. et al . Comparison of CT perfusion and angiography and MRI in selecting stroke patients for acute treatment. Neurology. 2007; 68 694-697
- 99 Kang D W, Chalela J A, Dunn W. et al . MRI screening before standard tissue plasminogen activator therapy is feasible and safe. Stroke. 2005; 36 1939-1943
- 100 Earnshaw S R, Jackson D, Farkouh R. et al . Cost-effectiveness of patient selection using penumbral-based MRI for intravenous thrombolysis. Stroke. 2009; 40 1710-1720
- 101 Gesellschaft für Qualitätssicherung Hessen. .Auswertung der Statistik für das Jahr 2006. http://www.gqhnet.de/Projekte/Akut/Auswertungen/2005_schlaganfall_akut_.pdf (access 27.6.2009)
- 102 Baumgartner R W, Mattle H P, Schroth G. Assessment of ≥ 50 % and < 50 % intracranial stenoses by transcranial color-coded duplex sonography. Stroke. 1999; 30 87-92
- 103 Gerriets T, Goertler M, Stolz E. et al . Feasibility and validity of transcranial duplex sonography in patients with acute stroke. J Neurol Neurosurg Psychiatry. 2002; 73 17-20
- 104 Jahromi A S, Cina C S, Liu Y. et al . Sensitivity and specificity of color duplex ultrasound measurement in the estimation of internal carotid artery stenosis: a systematic review and meta-analysis. J Vasc Surg. 2005; 41 962-972
- 105 Seidel G, Kaps M, Gerriets T. Potential and limitations of transcranial color-coded sonography in stroke patients. Stroke. 1995; 26 2061-2066
- 106 Alexandrov A V, Demchuk A M, Felberg R A. et al . High rate of complete recanalization and dramatic clinical recovery during tPA infusion when continuously monitored with 2-MHz transcranial doppler monitoring. Stroke. 2000; 31 610-614
- 107 Allendoerfer J, Goertler M, Reutern G M von. Prognostic relevance of ultra-early doppler sonography in acute ischaemic stroke: a prospective multicentre study. Lancet Neurol. 2006; 5 835-840
- 108 Kaps M, Stolz E, Allendoerfer J. Prognostic value of transcranial sonography in acute stroke patients. Eur Neurol. 2008; 59 (Suppl. 1) 9-16
- 109 Stolz E, Cioli F, Allendoerfer J. et al . Can early neurosonology predict outcome in acute stroke? a metaanalysis of prognostic clinical effect sizes related to the vascular status. Stroke. 2008; 39 3255-3261
- 110 Ribo M, Alvarez-Sabin J, Montaner J. et al . Temporal profile of recanalization after intravenous tissue plasminogen activator: selecting patients for rescue reperfusion techniques. Stroke. 2006; 37 1000-1004
- 111 Cupini L M, Diomedi M, Placidi F. et al . Cerebrovascular reactivity and subcortical infarctions. Arch Neurol. 2001; 58 577-581
- 112 Markus H, Cullinane M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain. 2001; 124 457-467
- 113 Markus H S, Droste D W, Kaps M. et al . Dual antiplatelet therapy with clopidogrel and aspirin in symptomatic carotid stenosis evaluated using doppler embolic signal detection: the Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic Carotid Stenosis (CARESS) trial. Circulation. 2005; 111 2233-2240
- 114 Eyding J, Krogias C, Schollhammer M. et al . Contrast-enhanced ultrasonic parametric perfusion imaging detects dysfunctional tissue at risk in acute MCA stroke. J Cereb Blood Flow Metab. 2006; 26 576-582
- 115 Wiesmann M, Meyer K, Albers T. et al . Parametric perfusion imaging with contrast-enhanced ultrasound in acute ischemic stroke. Stroke. 2004; 35 508-513
- 116 Eckert B, Koch C, Thomalla G. et al . Aggressive therapy with intravenous abciximab and intra-arterial rtPA and additional PTA / stenting improves clinical outcome in acute vertebrobasilar occlusion: combined local fibrinolysis and intravenous abciximab in acute vertebrobasilar stroke treatment (FAST): results of a multicenter study. Stroke. 2005; 36 1160-1165, Epub 2005 May 12
- 117 Lindsberg P J, Mattle H P. Therapy of basilar artery occlusion: a systematic analysis comparing intra-arterial and intravenous thrombolysis. Stroke. 2006; 37 922-928
- 118 Nagel S, Schellinger P D, Hartmann M. et al . Therapy of acute basilar artery occlusion: intraarterial thrombolysis alone vs bridging therapy. Stroke. 2009; 40 140-146
- 119 Arnold M, Schroth G, Nedeltchev K. et al . Intra-arterial thrombolysis in 100 patients with acute stroke due to middle cerebral artery occlusion. Stroke. 2002; 33 1828-1833
- 120 Baron J C. Mapping the ischaemic penumbra with PET: implications for acute stroke treatment. Cerebrovasc Dis. 1999; 9 193-201
- 121 Heiss W D, Kracht L W, Thiel A. et al . Penumbral probability thresholds of cortical flumazenil binding and blood flow predicting tissue outcome in patients with cerebral ischaemia. Brain. 2001; 124 20-29
- 122 Takasawa M, Jones P S, Guadagno J V. et al . How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET. Stroke. 2008; 39 870-877
- 123 Heiss W D, Podreka I. Role of PET and SPECT in the assessment of ischemic cerebrovascular disease. Cerebrovasc Brain Metab Rev. 1993; 5 235-263
- 124 Chavez J C, Zaleska M M, Wang X. et al . Multimodal magnetic resonance imaging for assessing evolution of ischemic penumbra: a key translational medicine strategy to manage the risk of developing novel therapies for acute ischemic stroke. J Cereb Blood Flow Metab. 2009; 29 217-219
- 125 Wu O, Christensen S, Hjort N. et al . Characterizing physiological heterogeneity of infarction risk in acute human ischaemic stroke using MRI. Brain. 2006; 129 2384-2393
- 126 Serena J, Davalos A, Segura T. et al . Stroke on awakening: looking for a more rational management. Cerebrovasc Dis. 2003; 16 128-133
- 127 Thomalla G, Rossbach P, Rosenkranz M. et al . Negative FLAIR imaging identifies acute ischemic stroke ≤ 3 hours. Ann Neurol. in press;
- 128 Cho A H, Sohn S I, Han M K. et al . Safety and efficacy of MRI-based thrombolysis in unclear-onset stroke. A preliminary report. Cerebrovasc Dis. 2008; 25 572-579
- 129 Hellier K D, Hampton J L, Guadagno J V. et al . Perfusion CT helps decision making for thrombolysis when there is no clear time of onset. J Neurol Neurosurg Psychiatry. 2006; 77 417-419
- 130 Iosif C, Oppenheim C, Trystram D. et al . MR imaging-based decision in thrombolytic therapy for stroke on awakening: report of 2 cases. AJNR Am J Neuroradiol. 2008; 29 1314-1316
- 131 Munoz Maniega S, Cvoro V, Chappell F M. et al . Changes in NAA and lactate following ischemic stroke: a serial MR spectroscopic imaging study. Neurology. 2008; 71 1993-1999
- 132 Geisler B S, Brandhoff F, Fiehler J. et al . Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients. Stroke. 2006; 37 1778-1784
- 133 Siemonsen S, Fitting T, Thomalla G. et al . T2' imaging predicts infarct growth beyond the acute diffusion-weighted imaging lesion in acute stroke. Radiology. 2008; 248 979-986
- 134 Lee J I, Wittsack H J, Christaras A. et al . Normalization of brain tissue lactate after hyperbaric oxygen therapy in a progressive stroke patient. Cerebrovasc Dis. 2008; 26 447-448
- 135 Stengel A, Neumann-Haefelin T, Singer O C. et al . Multiple spin-echo spectroscopic imaging for rapid quantitative assessment of N-acetylaspartate and lactate in acute stroke. Magn Reson Med. 2004; 52 228-238
- 136 Hampson M, Peterson B S, Skudlarski P. et al . Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp. 2002; 15 247-262
- 137 Kunimatsu A, Aoki S, Masutani Y. et al . Three-dimensional white matter tractography by diffusion tensor imaging in ischaemic stroke involving the corticospinal tract. Neuroradiology. 2003; 45 532-535
- 138 Lie C, Hirsch J G, Rossmanith C. et al . Clinicotopographical correlation of corticospinal tract stroke: a color-coded diffusion tensor imaging study. Stroke. 2004; 35 86-92
- 139 Thomalla G, Glauche V, Koch M A. et al . Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. Neuroimage. 2004; 22 1767-1774
- 140 Alexandrov A V, Molina C A, Grotta J C. et al . Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med. 2004; 351 2170-2178
- 141 Molina C A, Ribo M, Rubiera M. et al . Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke. 2006; 37 425-429
- 142 Daffertshofer M, Gass A, Ringleb P. et al . Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator: results of a phase II clinical trial. Stroke. 2005; 36 1441-1446
Dr. med. Götz Thomalla
Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, Universitätsklinikum Hamburg-Eppendorf
Martinistr. 52
20246 Hamburg
Email: thomalla@uke.uni-hamburg.de