RSS-Feed abonnieren
DOI: 10.1055/s-0029-1220723
© Georg Thieme Verlag KG Stuttgart · New York
Renal Glucose Excretion and Tubular Reabsorption Rate Related to Blood Glucose in Subjects with Type 2 Diabetes with a Critical Reappraisal of the “Renal Glucose Threshold” Model
Publikationsverlauf
received 02.02.2009
accepted 31.03.2009
Publikationsdatum:
05. Mai 2009 (online)

Abstract
Until today a “renal threshold for glucose” is described in most medical textbooks. Notwithstanding, low glucose levels are detectable in urine even under euglycaemic conditions – a phenomenon which was observed already in 1904 and labelled as “basal glucosuria”. We aimed to characterise renal glucose transport during various steady-state blood glucose levels. Twenty-two subjects with type 2 diabetes and normal renal function underwent two 5-period hyperglycaemic glucose-clamps with blood glucose target levels between 7.8 and 13.3 mmol·l−1. A virtual renal threshold for glucose excretion (VRTG) was calculated for every subject as the highest blood glucose concentration during the glucose-clamps associated with a concomitant urinary glucose level of <2.8 mmol·l−1. VRTG of subjects was classified as low, medium, and high. Each urine sample contained a detectable amount of glucose with a minimal urinary glucose concentration of 0.73 mmol·l−1. Median VRTG was 11.0 mmol·l−1, ranging from 7.8 and 12.1 mmol·l−1. With increasing blood glucose renal glucose excretion increased in each subject – but varied considerably between subjects. For example, at a blood glucose concentration of 11 mmol·l−1 renal glucose excretion ranged from 163 μmol·min−1 to 25 μmol·min−1 in subjects exhibiting a low to high VRTG, thus showing a variability >factor 6. This study reinforces the rejection of the concept of a renal threshold for glucose. Instead, this study shows a substantial variability of renal glucose excretion between subjects with type 2 diabetes.
Key words
renal threshold for glucose excretion - urinary glucose - splay - tubular transport maximum for glucose - hyperglycaemic glucose-clamp - type 2 diabetes mellitus
References
-
1 Deetjen P, Drexel H, Aczel S. Renal handling of D-Glucose and Other Sugars. In: Massry SG, Glassock RJ, ed.
Massry and Glassock's Textbook of Nephrology . Philadelphia: Lippincott Williams & Wilkins 2001: 87-90 -
2 Deetjen P, Baeyer Hv, Drexel H. Renal glucose transport. In: Seldin DW, Giebisch G, ed.
The kidney: physiology and pathophysiology . New York: Raven Press 1992: 2873- 2888 - 3 Davison JM, Cheyne GA. Renal reabsorption of glucose. Lancet. 1972; 1 787-788
- 4 Davison JM, Cheyne GA. History of the measurement of glucose in urine: a cautionary tale. Med Hist. 1974; 18 194-197
- 5 Shannon JA, Farber S, Troast L. The measurement of glucose Tm in the normal dog. Am J Physiol. 1941; 133 752-761
- 6 Brodehl J, Franken A, Gellissen K. Maximal tubular reabsorption of glucose in infants and children. Acta Paediatr Scand. 1972; 61 413-420
- 7 Rohde R, Deetjen P. Glucose reabsorption in the rat kidney. Micro_puncture analysis of tubular glucose concentration during free flow. Pflugers Arch. 1968; 302 219-232
-
8 Hierholzer K, Fromm M. Funktionen der Nieren. In: Schmidt RF, Thews G, ed.
Physiologie des Menschen . Berlin: Springer 1997: 737-777 -
9
Golenhofen K.
Physiologie.
1997;
386-392
-
10 Berger M, Sawicki PT. Coma diabeticum. In: Berger M, ed.
Diabetes mellitus . München: Urban & Fischer 2000: 387-393 -
11 Bojunga J, Badenhoop K, Althoff PH, Usadel KH. Akute Stoffwechselentgleisungen. In: Mehnert H, Standl E, Usadel KH, Häring HU, ed.
Diabetologie in Klinik und Praxis . Stuttgart: Georg Thieme 2003: 376-399 -
12 Grüneklee D. Diagnostik und Therapiekontrolle des Diabetes mellitus. In: Rosak C, ed.
Angewandte Diabetologie . Bremen: UNI-MED 2005: 40-65 -
13 Krautzig S. Niere. In: Renz-Polster H, Braun J, ed.
Basislehrbuch Innere Medizin . München: Urban & Fischer 2001: 840-913 - 14 Lazarus A. 3. Über alimentäre Glykosurie. Z Ärztl Fortbild (Jena). 1904; 1 517-520
- 15 Benedict SR, Osterberg E. A method for the determination of sugar in normal urine. J Biol Chem. 1918; 34 195-201
- 16 Brodehl J, Oemar BS, Hoyer PF. Renal glucosuria. Pediatr Nephrol. 1987; 1 502-508
- 17 Fine J. Glucose content of normal urine. Br Med J. 1965; 1 1209-1214
- 18 Folin O. A qualitative (reduction) test for sugar in normal human urine. J Biol Chem. 1915; 22 327-329
- 19 Gupta RC, Goyal A, Ghosh R, Punjabi M, Singh PP. Normal range for glucose in urine: age-related changes. Clin Chem. 1982; 28 2335
- 20 Hanusch AW, Kaiser G. A contribution to urinary glucose excretion of metabolically healthy persons. Dtsch Gesundheitsw. 1968; 23 1888-1892
- 21 Heimsoth VH, Graffe-Achelis C, Banauch D, Vollmar J. Referenzwerte für die Glukosekonzentration im Urin von Erwachsenen. Med Lab (Stuttg). 1978; 31 236-240
-
22 Heinemann L, Sawicki PT, Niederau CM, Starke AAR. Klinische Chemie. In: Berger M, ed.
Diabetes Mellitus . München: Urban & Fischer 2000: 44-65 - 23 Jain S. Reference interval for urinary glucose in elderly subjects. Clin Chem. 1986; 32 711-712
- 24 Jain S. Reference interval for urinary glucose: effect of age. Clin Chem. 1986; 32 1426
-
25 Kruse-Jarres JD, Reinauer H, Witt I. Kohlenhydratstoffwechsel. In: Greiling H, Gressner AM, ed.
Lehrbuch der klinischen Chemie und Pathobiochemie . Stuttgart: Schattauer 1995: 248-299 - 26 Renschler HE, Weicker H, von Baeyer H. The upper limit of glucose concentration in the urine of healthy subjects]. Dtsch Med Wochenschr. 1965; 90 2349-2353
- 27 Sindoni A. Blood sugar versus urine sugar. J Am Med Assoc. 1939; 112 2503-2504
-
28 Thomas L. Glucose im Harn und anderen Körperflüssigkeiten. In: Thomas L, ed.
Labor und Diagnose . Frankfurt/Main: TH-Books 1998: 141-142 - 29 Butterfield WJ, Keen H, Whichelow MJ. Renal glucose threshold variations with age. Br Med J. 1967; 4 505-507
- 30 Walford S, Page MM, Allison SP. The influence of renal threshold on the interpretation of urine tests for glucose in diabetic patients. Diabetes Care. 1980; 3 672-674
- 31 Winter KA. Relationships between blood and urinary sugar and their clinical significance. 1. Methodical studies and results. Z Gesamte Inn Med. 1973; 28 189-194
- 32 Winter KA. Relationships between blood and urinary sugar and their clinical significance. 2. Clinical significance of marginal blood sugar value determinations. Z Gesamte Inn Med. 1973; 28 217-222
- 33 Menzel R, Kaisaki PJ, Rjasanowski I, Heinke P, Kerner W, Menzel S. A low renal threshold for glucose in diabetic patients with a mutation in the hepatocyte nuclear factor-1α (HNF-1α) gene. Diabet Med. 1998; 15 816-820
- 34 Ruhnau B, Faber OK, Borch-Johnsen K, Thorsteinsson B. Renal threshold for glucose in non-insulin-dependent diabetic patients. Diabetes Res Clin Pract. 1997; 36 27-33
- 35 Mohnike G, Lisewski G, Israel HJ. The threshold point for glucose in diabetes mellitus and renal diabetes. Z Gesamte Inn Med. 1961; 16 1073-1077
-
36
Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus .
Diabetes Care.
1997;
20
1183-1197
- 37 Rule AD, Larson TS, Bergstralh EJ, Slezak JM, Jacobsen SJ, Cosio FG. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med. 2004; 141 929-937
- 38 Rave K, Nosek L, Posner J, Heise T, Roggen K, van Hoogdalem E-J. Renal glucose excretion as a function of blood glucose concentration in subjects with type 2 diabetes – results of a hyperglycaemic glucose clamp study. Nephrol Dial Transplant. 2006; 21 2166-2171
- 39 Johansen K, Svendsen PA, Lorup B. Variations in renal threshold for glucose in Type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1984; 26 180-182
- 40 Erkelens DW, Dullaart R, Peuker N. Tubular reabsorption of glucose in quantifying the relation between blood glucose and urinary glucose excretion in diabetic patients. Neth J Med. 1983; 26 1-9
Correspondence
K. RaveMD
Profil Institut für Stoffwechselforschung GmbH
Hellersbergstr. 9
41460 Neuss
Germany
Telefon: +49/2131/40 18 403
Fax: +49/2131/40 18 503
eMail: klaus.rave@profil-research.de