Zusammenfassung
Die radiologische und nuklearmedizinische Bildgebung in der Diagnostik des Prostatakarzinoms sowie von lokoregionären Rezidiven und eventuell befallener Lymphknoten hat in den letzten Jahren wesentliche Fortschritte erzielt. Mit der technischen Weiterentwicklung im Bereich der Magnetresonanztomografie (MRT) und der nuklearmedizinischen Tracer konnte eine Erhöhung der Sensitivität auf 85–90 % und der Spezifität auf 75–90 % erreicht werden. Insbesondere die MRT hat mit der Einführung der Spektroskopie und diffusionsgewichteter Sequenzen, aber auch mit dem zunehmenden klinischen Einsatz von Sequenzen zur Auswertung der Perfusion wesentliche Beiträge in der multiparametrischen Diagnostik geliefert. Mithilfe von speziellen lymphknotenspezifischen Kontrastmitteln, sogenannten „ultrasmall paramagnetic iron particles“ (USPIO) konnten in Studien bis zu 100 % aller pathologisch befallenen Lymphknoten detektiert werden. Auch in der nuklearmedizinischen Diagnostik konnten wesentliche Fortschritte durch die Entwicklung von an 18 Fluor koppelbare Tracer erreicht werden, die sich durch eine längere Halbwertszeit auszeichnen und daher auch an Instituten ohne eigenes Zyklotron verwendet werden können. Die so erreichten Sensitivitäten und Spezifitäten für die Detektion des Primärtumors und lokoregionärer Rezidive liegen damit zwischen 85 und 95 %.
Abstract
The diagnostic methods in radiology and nuclear medicine for the imaging of prostate cancer as well as for the detection of locoregional recurrent disease and positive lymph nodes have progressed dramatically over the past years. Regarding technical advances in magnetic resonance imaging (MRI) and the new tracers used in nuclear medicine, an increase in sensitivity up to 85–90 % and in specificity up to 75–90 % has been achieved. Especially in MRI, efforts had been made to implement multiparametric imaging using the diagnostic methods of spectroscopy and diffusion-weighted sequences and by including dynamic contrast enhancement studies. In addition, by the use of dedicated, lymph-node specific contrast media, “ultrasmall paramagnetic iron particles” (USPIO), up to 100 % of all pathological lymph nodes were detected in the published studies. Also in the field of nuclear medicine there have been relevant advances such as the development of specific tracer substances, which can be coupled to 18 fluorine, a nuclide that is characterised by a longer half-life time than 11 C and is therefore usable even in sites without an in-house cyclotron. Using this nuclide, the sensitivity and specificity rates in the detection of primary prostate cancer as well as in locoregional recurrences have been increased to values between 85 and 95 %.
Schlüsselwörter
Prostatakarzinom - bildgebende Diagnostik - multiparametrische Bildgebung - PET / CT
Key words
prostate cancer - image-guided diagnosis - multiparametric imaging - PET / CT
Literatur
1
Hricak H, Choyke P L, Eberhardt S C et al.
Imaging prostate cancer: a multidisciplinary perspective.
Radiology.
2007;
243
28-53
2
Kramer S, Gorich J, Gottfried H W et al.
Sensitivity of computed tomography in detecting local recurrence of prostatic carcinoma following radical prostatectomy.
Br J Radiol.
1997;
70
995-999
3
Purohit R S, Shinohara K, Meng M V et al.
Imaging clinically localized prostate cancer.
Urol Clin North Am.
2003;
30
279-293
4
Masterson T A, Touijer K.
The role of endorectal coil MRI in preoperative staging and decision-making for the treatment of clinically localized prostate cancer.
MAGMA.
2008;
21
371-377
5
Mazaheri Y, Shukla-Dave A, Muellner A et al.
MR imaging of the prostate in clinical practice.
MAGMA.
2008;
21
379-392
6
Kurhanewicz J, Vigneron D, Carroll P et al.
Multiparametric magnetic resonance imaging in prostate cancer: present and future.
Curr Opin Urol.
2008;
18
71-77
7
Kaji Y, Kurhanewicz J, Hricak H et al.
Localizing prostate cancer in the presence of postbiopsy changes on MR images: role of proton MR spectroscopic imaging.
Radiology.
1998;
206
785-790
8
Qayyum A, Coakley F V, Lu Y et al.
Organ-confined prostate cancer: effect of prior transrectal biopsy on endorectal MRI and MR spectroscopic imaging.
AJR Am J Roentgenol.
2004;
183
1079-1083
9
Futterer J J.
MR imaging in local staging of prostate cancer.
Eur J Radiol.
2007;
63
328-334
10
Schiebler M L, Schnall M D, Pollack H M et al.
Current role of MR imaging in the staging of adenocarcinoma of the prostate.
Radiology.
1993;
189
339-352
11
Beyersdorff D, Taupitz M, Winkelmann B et al.
Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: value of MR imaging.
Radiology.
2002;
224
701-706
12
Futterer J J, Scheenen T W, Heijmink S W et al.
Standardized threshold approach using three-dimensional proton magnetic resonance spectroscopic imaging in prostate cancer localization of the entire prostate.
Invest Radiol.
2007;
42
116-122
13
Kim C K, Park B K.
Update of prostate magnetic resonance imaging at 3 T.
J Comput Assist Tomogr.
2008;
32
163-172
14
van As N J, de Souza N M, Riches S F et al.
A Study of diffusion-weighted magnetic resonance imaging in men with untreated localised prostate cancer on active surveillance.
Eur Urol.
2008;
15
Harisinghani M G, Barentsz J, Hahn P F et al.
Noninvasive detection of clinically occult lymph-node metastases in prostate cancer.
N Engl J Med.
2003;
348
2491-2499
16
Harisinghani M G, Saksena M A, Hahn P F et al.
Ferumoxtran-10-enhanced MR lymphangiography: does contrast-enhanced imaging alone suffice for accurate lymph node characterization?.
AJR Am J Roentgenol.
2006;
186
144-148
17
Heidenreich A, Aus G, Bolla M et al.
EAU guidelines on prostate cancer.
Eur Urol.
2008;
53
68-80
18
Mulhall J P, Secin F P, Guillonneau B.
Artery sparing radical prostatectomy – myth or reality?.
J Urol.
2008;
179
827-831
19
Jayachandran J, Banez L L, Levy D E et al.
Risk stratification for biochemical recurrence in men with positive surgical margins or extracapsular disease after radical prostatectomy: results from the SEARCH database.
J Urol.
2008;
17
1791-1796
, discussion 1796
20
Bloch B N, Furman-Haran E, Helbich T H et al.
Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging – initial results.
Radiology.
2007;
245
176-185
21
Sala E, Eberhardt S C, Akin O et al.
Endorectal MR imaging before salvage prostatectomy: tumor localization and staging.
Radiology.
2006;
238
176-183
22
Hricak H, Wang L, Wei D C et al.
The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy.
Cancer.
2004;
100
2655-2663
23
Mendenhall W M, Henderson R H, Mendenhall N P.
Definitive radiotherapy for prostate cancer.
Am J Clin Oncol.
2008;
31
496-503
24
Pollack A, Hanlon A, Horwitz E M et al.
Radiation therapy dose escalation for prostate cancer: a rationale for IMRT.
World J Urol.
2003;
21
200-208
25
Djavan B, Ravery V, Zlotta A et al.
Prospective evaluation of prostate cancer detected on biopsies 1, 2, 3 and 4: when should we stop?.
J Urol.
2001;
166
1679-1683
26
Fuchsjager M, Shukla-Dave A, Akin O, Barentsz J et al.
Prostate cancer imaging.
Acta Radiol.
2008;
49
107-120
27
Cheikh A B, Girouin N, Colombel M et al.
Evaluation of T2-weighted and dynamic contrast-enhanced MRI in localizing prostate cancer before repeat biopsy.
Eur Radiol.
2008;
28
Pondman K M, Futterer J J, ten Haken B et al.
MR-guided biopsy of the prostate: an overview of techniques and a systematic review.
Eur Urol.
2008;
54
517-527
29
Pucar D, Hricak H, Shukla-Dave A et al.
Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence.
Int J Radiat Oncol Biol Phys.
2007;
69
62-69
30
Speight J L, Roach 3rd
M.
Radiotherapy in the management of clinically localized prostate cancer: evolving standards, consensus, controversies and new directions.
J Clin Oncol.
2005;
23
8176-8185
31
Lohr F, Fuss M, Tiefenbacher U et al.
[Optimizing the use of radiotherapy with IMRT and image guided location of advanced prostate cancer].
Urologe A.
2004;
43
43-51
32
Zelefsky M J, Fuks Z, Hunt M et al.
High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients.
Int J Radiat Oncol Biol Phys.
2002;
53
1111-1116
33
Lin A M, Small E J.
Prostate cancer update: 2006.
Curr Opin Oncol.
2007;
19
229-233
34
deSouza N M, Riches S F, Vanas N J et al.
Diffusion-weighted magnetic resonance imaging: a potential non-invasive marker of tumour aggressiveness in localized prostate cancer.
Clin Radiol.
2008;
63
774-782
35
Zakian K L, Sircar K, Hricak H et al.
Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy.
Radiology.
2005;
234
804-814
36 Ziegler S I. Instrumentierung: SPECT, PET, PET / CT. In: Krause BJ, Buck A, Schwaiger M, eds, Nuklearmedizinische Onkologie. 1st ed. Landsberg: ecomed Medizin; 2007: 17–25
37
Hofer C, Laubenbacher C, Block T et al.
Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy.
Eur Urol.
1999;
36
31-35
38
Liu I J, Zafar M B, Lai Y H et al.
Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer.
Urology.
2001;
57
108-111
39
Ramirez de Molina A, Rodriguez-Gonzalez A, Gutierrez R et al.
Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers.
Biochem Biophys Res Commun.
2002;
296
580-583
40
Zheng Q H, Gardner T A, Raikwar S et al.
[11 C]Choline as a PET biomarker for assessment of prostate cancer tumor models.
Bioorg Med Chem.
2004;
12
2887-2893
41
Farsad M, Schiavina R, Castellucci P et al.
Detection and localization of prostate cancer: correlation of (11 )C-choline PET / CT with histopathologic step-section analysis.
J Nucl Med.
2005;
46
1642-1649
42
Martorana G, Schiavina R, Corti B et al.
11 C-choline positron emission tomography / computerized tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy.
J Urol.
2006;
176
954-960
, discussion 960
43
Reske S N, Blumstein N M, Neumaier B et al.
Imaging prostate cancer with 11 C-choline PET / CT.
J Nucl Med.
2006;
47
1249-1254
44
Scher B, Seitz M, Albinger W et al.
Value of 11 C-choline PET and PET / CT in patients with suspected prostate cancer.
Eur J Nucl Med Mol Imaging.
2007;
34
45-53
45
Yamaguchi T, Lee J, Uemura H et al.
Prostate cancer: a comparative study of 11 C-choline PET and MR imaging combined with proton MR spectroscopy.
Eur J Nucl Med Mol Imaging.
2005;
32
742-748
46
de Jong I J, Pruim J, Elsinga P H et al.
Visualization of prostate cancer with 11 C-choline positron emission tomography.
Eur Urol.
2002;
42
18-23
47
Kotzerke J, Zophel K, Salomon G et al.
[Pro and contra: 11 C choline PET in diagnosis of prostate cancer].
Aktuelle Urol.
2007;
38
189-194
48
Heinisch M, Dirisamer A, Loidl W et al.
Positron emission tomography / computed tomography with F-18-fluorocholine for restaging of prostate cancer patients: meaningful at PSA < 5 ng / ml?.
Mol Imaging Biol.
2006;
8
43-48
49
Krause B J, Souvatzoglou M, Tuncel M et al.
The detection rate of [11 C]choline-PET / CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer.
Eur J Nucl Med Mol Imaging.
2008;
35
18-23
Priv. Doz. Dr. med. D. J. Dinter
Institut für Klinische Radiologie und Nuklearmedizin · Universitätsmedizin Mannheim · Medizinische Fakultät Mannheim der Universität Heidelberg
Theodor-Kutzer-Ufer 1–3
68167 Mannheim
Telefon: +49 / 6 21 / 3 83 22 76
Fax: +49 / 6 21 / 3 83 38 17
eMail: dietmar.dinter@umm.de