Subscribe to RSS
DOI: 10.1055/s-0029-1225355
© Georg Thieme Verlag KG Stuttgart · New York
Pulsatility of an Intracavernous Aneurysm Demonstrated by Dynamic 320-detector Row CTA at High Temporal Resolution
In-vivo Darstellung der Aneurysmapulsation mittels 320-Zeilen CT AngiographiePublication History
Publication Date:
22 October 2009 (online)
Abstract
Studying the flow dynamics of intracranial aneurysms and the associated pulsatility of the aneurysm wall may help to risk-stratify unruptured aneurysms. Currently, in-vivo methods that visualize aneurysm wall movement at high temporal resolution are not yet fully established. We describe a patient with an intracavernous aneurysm in whom the area of increased aneurysm pulsatility as demonstrated by high-temporal resolution CTA was identical to the area of aneurysm growth on follow-up. A 35-year-old man presented with headaches and a sixth nerve palsy. CT including dynamic CTA demonstrated a pulsating intracavernous aneurysm. On follow-up one week later, the patient had developed hypesthesia in his V1 and V2 distribution and repeat imaging demonstrated aneurysm growth in the aneurysm part that demonstrated pulsatile movements on dynamic CTA. Stent-assisted coiling of the aneurysm was performed and led to clinical improvement. Dynamic CTA was performed using a 320-detector row CT following continuous rotational scanning during the administration of contrast with subsequent image reconstructions at 100 msec intervals. Dynamic CTA can demonstrate aneurysm pulsations that, as in the present case of a patient with a giant intracavernous aneurysm, were associated with aneurysm growth in the area of maximum pulsation. We hypothesize that this technique may predict aneurysm growth and may therefore be helpful in the non-invasive in vivo assessment of individual aneurysm features such as dome and bleb pulsations in both unruptured and ruptured aneurysms.
Zusammenfassung
Die Untersuchung der Flussdynamik und der Aneurysmawandpulsationen intrakranieller Aneurysmen kann einen Beitrag zur Risikoabschätzung inzidenteller Aneurysmen liefern. Bislang sind in-vivo Methoden zur zeitlich hochaufgelösten Darstellung von Aneurysmapulsationen jedoch nicht etabliert. Wir beschreiben den Fall eines Patienten mit einem intracavernösen Aneurysma, bei dem die Technik der zeitlich hochaufgelösten CT-Angiographie umschriebene Aneurysmapulsationen in dem Abschnitt des Aneurysmas zeigen konnte, in dem im zeitlichen Verlauf eine Größenprogredienz festgestellt wurde. Ein 35-jähriger Patient stellte sich mit Kopfschmerzen und einer Abduzensparese vor. Dynamische CTA zeigte ein nichtrupturiertes umschrieben pulsierendes intracavernöses Aneurysma. Eine Woche nach initialer Präsentation beklagte der Patient eine progressive Hypästhesie des Gesichtes und die Verlaufsbildgebung zeigte ein umschriebenes Aneurysmawachstum in dem Bereich, im dem vorher die Pulsationen festgestellt wurden. Stentassistierte Platinspiralembolisation konnte problemlos durchgeführt werden und führte zu klinischer Verbesserung. Die dynamische CTA wurde mittels 320-Detektor-CT mit kontinuierlicher Rotation nach i. v. Injektion von Kontrastmittel durchgeführt. Bildrekonstruktion erfolgte in 100 msec Intervallen. Wir konnten in diesem Fallbericht zeigen, dass die dynamische CTA Aneurysmapulsationen zeigen kann. Zudem wiesen wir nach, dass das Areal der Aneurysmapulsation identisch mit dem Bereich ist, der im Verlauf eine Größenprogredienz aufwies. Deshalb ist es unsere Hypothese, dass die dynamische CTA Aneurysmawachstum prädizieren kann und deshalb hilfreich in der nicht-invasiven Beurteilung von nichtrupturierten Aneurysmen sein wird.
Key words
aneurysm - pulsation - aneurysm growth - cranial nerve palsy - dynamic CTA
Schlüsselwörter
Aneurysma - Pulsation - Aneurysmawachstum - dynamische CTA
References
- 1 Cebral JR, Castro MA, Burgess JE. et al . Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am J Neuroradiol. 2005; 26 2550-2559
- 2 Ford MD, Nikolov HN, Milner JS. et al . PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J Biomech Eng. 2008; 130 021015
- 3 Ford MD, Stuhne GR, Nikolov HN. et al . Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Trans Med Imaging. 2005; 24 1586-1592
- 4 Hayakawa M, Katada K, Anno H. et al . CT angiography with electrocardiographically gated reconstruction for visualizing pulsation of intracranial aneurysms: identification of aneurysmal protuberance presumably associated with wall thinning. AJNR Am J Neuroradiol. 2005; 26 1366-1369
- 5 Ishida F, Ogawa H, Simizu T. et al . Visualizing the dynamics of cerebral aneurysms with four-dimensional computed tomographic angiography. Neurosurgery. 2005; 57 460-471 discussion 460–471
- 6 Juvela S. Natural history of unruptured intracranial aneurysms: risks for aneurysm formation, growth, and rupture. Acta Neurochir Suppl. 2002; 82 27-30
- 7 Krisht AF, Gomez J, Partington S. Outcome of surgical clipping of unruptured aneurysms as it compares with a 10-year nonclipping survival period. Neurosurgery. 2006; 58 207-216 discussion 207–216
- 8 Mansour N, Kamel MH, Kelleher M. et al . Resolution of cranial nerve paresis after endovascular management of cerebral aneurysms. Surg Neurol. 2007; 68 500-504 discussion 504
- 9 Manzke R, Grass M, Hawkes D. Artifact analysis and reconstruction improvement in helical cardiac cone beam CT. IEEE Trans Med Imaging. 2004; 23 1150-1164
- 10 Manzke R, Grass M, Nielsen T. et al . Adaptive temporal resolution optimization in helical cardiac cone beam CT reconstruction. Med Phys. 2003; 30 3072-3080
- 11 Reinacher P, Reinges MH, Simon VA. et al . Dynamic 3-D contrast-enhanced angiography of cerebral tumours and vascular malformations. Eur Radiol. 2007; 17 ((Suppl 6)) F52-F62
- 12 Rodriguez-Catarino M, Frisen L, Wikholm G. et al . Internal carotid artery aneurysms, cranial nerve dysfunction and headache: the role of deformation and pulsation. Neuroradiology. 2003; 45 236-240
- 13 Sakaki T, Tominaga M, Miyamoto K. et al . Clinical studies of de novo aneurysms. Neurosurgery. 1993; 32 512-516 discussion 516–517
- 14 Shojima M, Oshima M, Takagi K. et al . Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke. 2004; 35 2500-2505
- 15 Steinman DA, Milner JS, Norley CJ. et al . Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am J Neuroradiol. 2003; 24 559-566
- 16 Tateshima S, Murayama Y, Villablanca JP. et al . In vitro measurement of fluid-induced wall shear stress in unruptured cerebral aneurysms harboring blebs. Stroke. 2003; 34 187-192
- 17 Tsutsumi K, Ueki K, Usui M. et al . Risk of subarachnoid hemorrhage after surgical treatment of unruptured cerebral aneurysms. Stroke. 1999; 30 1181-1184
- 18 van Rooij WJ, Sluzewski M. Unruptured large and giant carotid artery aneurysms presenting with cranial nerve palsy: comparison of clinical recovery after selective aneurysm coiling and therapeutic carotid artery occlusion. AJNR Am J Neuroradiol. 2008; 29 997-1002
- 19 Wiebers DO, Whisnant JP, Huston 3rd J. et al . Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003; 362 103-110
- 20 Yaghmai V, Rohany M, Shaibani A. et al . Pulsatility imaging of saccular aneurysm model by 64-slice CT with dynamic multiscan technique. J Vasc Interv Radiol. 2007; 18 785-788
- 21 Yamamoto S, Koyama Y, Suzuki M. et al . Optimized control of X-ray exposure and image noise using a particular multislice CT scanner. Nippon Hoshasen Gijutsu Gakkai Zasshi. 2008; 64 955-959
Correspondence
Prof. T. Krings
Department of Neuroradiology
University of Toronto
399 Bathurst St. 3MCL-429
Toronto
Canada
Phone: +1/416/603 55 62
Fax: +1/416/603 42 57
Email: timo.krings@uhn.on.ca