Z Geburtshilfe Neonatol 2009; 213(4): 122-134
DOI: 10.1055/s-0029-1225634
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

ATP-Depletion durch Hyperventilation, Gewebehypoxie und Hypermetabolismus als Ursache für Plötzlichen Kindstod – eine Hypothese

Sudden Infant Death Syndrome (SIDS) Caused by ATP-Depletion Following Hyperventilation, Tissue-Hypoxia and Hypermetabolism – A HypothesisE. Deixler 1
  • 1IV. Medizinische Abteilung, Rheumatologie und Klinische Immunologie, Städtisches Klinikum München GmbH, Krankenhaus München-Bogenhausen, Akademisches Lehrkrankenhaus der Technischen Universität München
Further Information

Publication History

eingereicht 09.01.2009

angenommen nach Überarbeitung 13.05.2009

Publication Date:
14 August 2009 (online)

Zusammenfassung

Einleitung: Trotz rückläufiger Inzidenz ist der Plötzliche Kindstod in den Industrienationen noch immer die häufigste Todesursache im ersten Lebensjahr. Pathogenetisch spielt Hypoxie eine wichtige Rolle, der genaue Mechanismus ist allerdings ungeklärt.

Methoden: Eigene Überlegungen und selektive Literaturrecherche im Internet.

Hypothese: Der Plötzliche Kindstod ist Folge einer häufig protrahiert verlaufenden ATP-Depletion.

Diskussion: Sämtliche Risikofaktoren für Plötzlichen Kindstod begünstigen, besonders in Kombination, einen ATP-Mangel, indem sie den ATP-Abbau beschleunigen und/oder die ATP-Synthese vermindern. Pränataler chronischer Sauerstoff- und Nährstoffmangel führt beim Neugeborenen zu niedrigerem Geburtsgewicht, vermindertem Fettgewebe, vermehrtem Hämoglobin F, erhöhtem Sympathikotonus, Hypermetabolismus und reduzierter Hypoxietoleranz. Aufgrund geringerer Fettreserven wird postnatal mehr Energie für Wärmebildung benötigt, und bei Sauerstoffmangel zeigen Risikokinder einen abgeschwächten hypoxischen Hypometabolismus mit Hyperventilation statt Atemdepression. Die dadurch vermehrte Atemarbeit erfordert zusätzliche Energie und führt über eine weitere Zunahme der in diesem Lebensalter physiologischerweise noch erhöhten Sauerstoffaffinität zu Gewebehypoxie und verminderter ATP-Synthese. Zusätzlich verursacht der erhöhte Sympathikotonus Hypermetabolismus und beschleunigten ATP-Abbau. Während angeborene Risikofaktoren in Belastungssituationen, wie Nahrungsmangel, zu einer reduzierten ATP-Produktion führen können, erhöhen postnatale Risikofaktoren, wie zum Beispiel Überwärmung und Stress, durch Hyperventilation und Stoffwechselsteigerung den ATP-Umsatz und entleeren die Energiespeicher. Der Häufigkeitsgipfel für das Auftreten des Plötzlichen Kindstodes bei reifen Neugeborenen lässt sich durch den Hämoglobintiefpunkt der physiologischen Anämie und die dadurch verminderte Sauerstofftransportkapazität des Blutes erklären, welche die Gefahr einer Gewebehypoxie als Folge der noch erhöhten Sauerstoffaffinität und der nachlassenden Fähigkeit zu hypoxischem Hypometabolismus weiter vergrößert. Nahezu identische Befunde von Plötzlichem Kindstod einerseits und ATP-Mangelerkrankungen, wie zum Beispiel Hypophosphatämie, Hitzschlag und Kohlenmonoxidvergiftung andererseits, untermauern die aufgestellte Hypothese.

Abstract

Introduction: Despite a decreasing incidence, sudden infant death syndrome (SIDS) is still the most frequent cause of death in industrial nations during the first year of life. Hypoxia plays a major role in the pathogenesis, but the exact mechanism is not fully understood.

Methods: This study was based on personal considerations and a selective online literature search.

Hypothesis: SIDS is the result of a frequently protracted ATP-depletion.

Discussion: Especially in combination, all risk factors for SIDS favour an ATP-deficiency by increasing ATP-catabolism and/or by diminishing ATP-synthesis. Prenatal chronic hypoxaemia and an insufficient supply with nutrients lead to low birth-weight, reduced adipose tissue, elevated haemoglobin F, increased sympathetic activity, hypermetabolism, and diminished hypoxia tolerance in the neonates. Because of reduced adipose tissue, more energy for thermogenesis is needed after birth. In reaction to hypoxaemia, infants with risk factors show hyperventilation instead of hypoxic hypometabolism and respiratory depression. Enhanced breathing, however, requires additional ATP and causes increasing oxygen affinity, which is elevated physiologically during the first months of life. Thereby, tissue-hypoxia and diminished ATP-synthesis may arise. Besides, enhanced sympathetic activity leads to hypermetabolism and increased ATP-catabolism. While innate risk factors may reduce ATP-production in burdening situations, like food deprivation, postnatal hyperthermia and stress augment ATP-catabolism by hyperventilation and hypermetabolism and empty energy stores. For term newborns, the peak incidence of SIDS might be explained by the haemoglobin nadir of physiological anaemia and by the therefore reduced capacity for oxygen transport. Thereby, the risk of tissue-hypoxia, which follows increased oxygen affinity and vanishing ability to hypoxic hypometabolism, is further enhanced. The almost identical symptoms of SIDS and ATP-deficiency diseases like hypophosphataemia, heat stroke, and carbon monoxide poisoning support the presented hypothesis.

Literatur

  • 1 Bajanowski T, Poets C. Der plötzliche Säuglingstod: Epidemiologie, Ätiologie, Pathophysiologie und Differenzialdiagnostik.  Dtsch Ärztebl. 2004;  101 A 3185-A 3190 , [Heft 47]
  • 2 Caroll Jl, Loughlin GM. Sudden infant death syndrome. In: Frank A. Oski et al. (eds.) Principles and practice of pediatrics. Second edition. Philadelphia: J. B. Lippincott Company 1994
  • 3 Speer CP, Gahr M. Pädiatrie. 2. Auflage 2005; Springer Medizin Verlag Heidelberg.  Kapitel. 45 1216-1222
  • 4 Keens TG. Sudden Infant Death Syndrome. 22nd Annual Sudden Infant Death Syndrome Conference: The Dimensions of Hope: Yesterday, Today and Tomorrow. California Sudden Infant Death Syndrome Program, Indian Wells, California October 10–11, 2002
  • 5 Kleemann WJ, Schlaud M, Poets CF. et al . Hyperthermia in sudden infant death.  Int J Legal Med. 1996;  109 ((3)) 139-142
  • 6 Saugstad OD, Rognum TO. Sudden infant death syndrome is preceded by hypoxia.  Pediatric Research. 2003;  53 881-882
  • 7 Opdal SH, Rognum TO, Vege A. et al . Hypoxanthine levels in vitreous humor: A study of influencing factors in sudden infant death syndrome.  Pediatric Research. 1998;  44 ((2)) 192-196
  • 8 Reid GM. Sudden infant death syndrome (SIDS): T-cell immunodeficiency – Part 1.  Med Hypotheses. 2001;  56 ((2)) 256-258
  • 9 Galland BC, Taylor BJ, Bolton DGP. et al .Respiratory responses to hypoxia/hypercapnia in small for gestational age infants influenced by maternal smoking. Archives of Disease in Childhood Fetal and Neonatal Edition. 2003 88: F 217
  • 10 Edner A, Wennborg M, Alm B. et al . Why do ALTE infants not die in SIDS?.  Acta Paediatrica. 2007;  96 ((2)) 191-194
  • 11 Committee on Fetus and Newborn, 2002–2003. . Policy Statement. Apnoe, sudden infant death syndrome, and home monitoring.  Pediatrics. 2003;  111 ((4)) 914-917
  • 12 McGaffey HL. Laboratory findings postmortem in SIDS cases compared with those in other causes of death.  Am J Clin Pathol.. 2006;  126 636
  • 13 Constantinou JE, Gillis J, Ouvrier RA. et al . Hypoxicischemic encephalopathy after near miss sudden infant death syndrome.  Archives of Disease in Childhood. 1989;  64 703-708
  • 14 Kato I, Franco P, Groswasser J. et al . Incomplete arousal processes in infants who were victims of sudden death.  American Journal of Respiratory and Critical Care Medicine. 2003;  168 1298-1303
  • 15 Sridhar R, Thach BT, Kelly DH. et al . Characterization of successful and failed autoresuscitation in human infants, including those dying of SIDS.  Pediatr Pulmonol.. 2003;  36 ((2)) 113-122
  • 16 Deixler E, Helmke H. Adultes Still-Syndrom als Manifestation einer schweren Hypophosphatämie. Morbus Still-eine Störung des Energiestoffwechsels?.  Z Rheumatol. 2003;  62 ((3)) 287-293
  • 17 Finne HP, Halvorsen S. Regulation of erythropoiesis in the fetus and newborn.  Arch Dis Child. 1972;  47 683-687
  • 18 Brouillette R, Waxman DH. Evaluation of the newborn's blood gas status.  Clinical Chemistry. 1997;  43 215-221
  • 19 Toth B, Becker A, Seelbach-Göbel B. Oxygen saturation in healthy newborn infant immediately after birth measured by pulse oximetry.  Archives of Gynecology and Obstetrics. 2002;  266 ((2)) 105-107
  • 20 Waters K, Gozal D. Developmental and metabolic implications of the hypoxic ventilatory response.  Paediatr Respir Rev.. 2004;  5 ((3)) 173-181
  • 21 Bissonnette JM. Mechanisms regulating hypoxic respiratory depression during fetal and postnatal life.  Am J Physiol Regul Integr Comp Physiol. 2000;  278 R1391-R1400
  • 22 Mortola JP. How newborn mammals cope with hypoxia.  Respir Physiol. 1999;  116 ((2–3)) 95-103
  • 23 Walker DW, Lee B, Nitsos I. Effect of hypoxia on respiratory activity in the foetus.  Clinical and experimental Pharmacology and Physiology. 2003;  27 ((1–2)) 110-113
  • 24 Gautier H. Invited editorial on “oxygen transport in conscious newborn dogs during hypoxic hypometabolism”.  J Appl Physiol. 1998;  84 ((3)) 761-762
  • 25 Madden CJ, Morrison SF. Hypoxic activation of arterial chemoreceptors inhibits sympathetic outflow to brown adipose tissue in rats.  J Physiol.. 2005;  566 ((Pt 2)) 559-573
  • 26 Carter BW, Schucany WG. Brown adipose tissue in a newborn.  Proc (Bayl Univ Med Cent). 2008;  21 ((3)) 328-330
  • 27 Symonds ME, Lomax MA. Maternal and environmental influences on thermoregulation in the neonate.  Proceedings of the Nutrition Society. 1992;  51 165-172
  • 28 Asakura H. Fetal and neonatal thermoregulation.  J Nippon Med Sch. 2004;  71 ((6)) 360-370
  • 29 Cannon B, Nedergaard J. Brown adipose tissue: Function and physiological significance.  Physiol. Rev.. 2004;  84 277-359
  • 30 Carneheim C, Cannon B, Nedergaard J. Rare fatty acids in brown fat are substrates for thermogenesis during arousals from hibernation.  Am J Physiol.. 1989;  256 R146-R154
  • 31 de Meis Leopoldo, Arruda AP, da Costa RM. et al . Identification of a Ca++-ATPase in brown adipose tissue mitochondria.  J Biol Chem. 2006;  281 ((24)) 16384-16390
  • 32 Silva JE. The thermogenic effect of thyroid hormone and its clinical implications.  Annals of internal medicine. 2003;  139 ((3)) 205-213
  • 33 Singer D. Neonatal tolerance to hypoxia: a comparative-physiological approach.  Comp Biochem Physiol A Mol Integr Physiol. 1999;  123 ((3)) 221-234
  • 34 Zacanaro C, Carnielli VP, Moretti C. et al . An ultrastructural study of brown adipose tissue in preterm human newborns.  Tissue Cell. 1995;  27 ((3)) 339-348
  • 35 Storey K. Mammalian hibernation, Transcriptional and translational controls. In Roach RC et al. (ed.) Hypoxia: Through the lifecycle. Kluwer Academic/Plenum Publishers, New York 2003: 7-18
  • 36 Gnaiger E, Méndez G, Hand SC. High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia.  PNAS. 2000;  97 ((20)) 11080-11085
  • 37 Hochachka PW, Lutz PL. Mechanism, origin, and evolution of anoxia tolerance in animals.  Comp Biochem Physiol B Biochem Mol Biol. 2001;  130 ((4)) 435-459
  • 38 Boutillier RG. Mechanisms of cell survival in hypoxia and hypothermia.  The Journal of Experimental Biology. 2001;  204 3171-3181
  • 39 Gregory RB, Berry MN. Stimulation by thyroid hormone of coupled respiration and of respiration apparently not coupled to the synthesis of ATP in rat hepatocytes.  J Biol Chem. 1992;  267 ((13)) 8903-8908
  • 40 Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid hormone action.  J Clin Invest. 2006;  116 2571-2579
  • 41 Frappell PB, León-Velarde F, Aguero L. et al . Response to cooling temperature in infants born at an altitude of 4330 meters.  Am J Respi Crit Care Med. 1998;  158 ((6)) 1751-1756
  • 42 Haddad GG, Mellins RB. Hypoxia and respiratory control in early life.  Ann Rev Physiol. 1984;  46 629-643
  • 43 Bavis RW, Michell GS. Long-term effects of the perinatal environment on respiratory control.  J Appl Physiol. 2008;  104 1220-1229
  • 44 Koos BJ, Maeda T, Jan C. et al . Adenosine A(2A) receptors mediate hypoxic inhibition of fetal breathing in sheep.  Am J Obstet Gynecol.. 2002;  186 ((4)) 663-668
  • 45 Pearce W. Hypoxic regulation of the fetal cerebral circulation.  J Appl Physiol. 2006;  100 731-738
  • 46 Szillat D, Bukowiecki LJ. Control of brown adipose tissue lipolysis and respiration by adenosine.  Am J Physiol Endocrinol Metab.. 1983;  245 E555-E559
  • 47 Nilsson GE, Lutz PL. Role of GABA in hypoxia tolerance, metabolic depression and hibernation – possible links to neurotransmitter evolution.  Comp Biochem Physiol C. 1993;  105 ((3)) 329-336
  • 48 Koos BJ, Kawasaki Y, Kim Y-H. et al . AdenosinA2A-receptor blockade abolishes the roll-off respiratory response to hypoxia in awake lambs.  Am J Physiol Regul Integr Comp Physiol. 2005;  288 R1185-R1194
  • 49 Heldmaier G. Zitterfreie Wärmebildung und Körpergröße bei Säugetieren.  Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 1971;  73 ((2)) 222-247
  • 50 Scher MS, Steppe DA, Salerno DG. et al . Temperature differences during sleep between fullterm and preterm neonates at matched post-conceptional ages.  Clin Neurophsiol.. 2003;  114 ((1)) 17-22
  • 51 Rosenbaum M, Leibel RL. Role of gonadal steroids in the sexual dimorphisms in body composition and circulating concentrations of leptin.  The Journal of Clinical Endocrinology & Metabolism. 1999;  84 ((6)) 1784-1789
  • 52 Nagy E. Gender-related differences in rectal temperatures in human neonates.  Early Human Development. 2001;  64 37-43
  • 53 Reidy SP, Weber J-M. Leptin: an essential regulator of lipid metabolism.  Comparative Biochemistry and Physiology. 2000;  125 ((3)) 285-298
  • 54 Heldmaier G, Ortmann S, Elvert R. Natural hypometabolism during hibernation and daily torpor in mammals.  Respir Physiol Neurobiol. 2004;  141 ((3)) 317-329
  • 55 Rousset S. et al . The biology of mitochondrial uncoupling proteins.  Diabetes. 2004;  53 ((1)) S130-S135
  • 56 Kadenbach B. Intrinsic and extrinsic uncoupling of oxidative phosphorylation.  Biochimica and Biophysica Acta. 2003;  1604 77-94
  • 57 Beck V, Jaburek M, Demina T. et al . Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers.  The FASEB Journal. 2007;  21 1137-1144
  • 58 Westerberg R. et al . ELOVL3 is an important component for early onset of lipid recruitment in brown adipose tissue.  J Biol Chem. 2006;  281 ((8)) 4958-4968
  • 59 Jakobsson A, Jörgensen JA, Jacobsson A. Differential regulation of fatty acid elongation enzymes in brown adipocytes implies a unique role for Elovl3 during increased fatty acid oxidation.  Am J Physiol Endocrinol Metab. 2005;  289 E517-E526
  • 60 Geiser F, McAllan BM, Kenagy GJ. The degree of dietary fatty acid unsaturation affects torpor patterns and lipid composition of a hibernator.  Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology. 1994;  164 ((4)) 299-305
  • 61 McConkie-Rosell A, Iafolla AK. Medium-chain acyl CoA dehydrogenase deficiency: Its relationship to SIDS and the impact on genetic counseling.  Journal of Genetic Counseling. 1993;  2 ((1)) 17-27
  • 62 Oey NA. et al . Long-chain fatty acid oxidation during early human development.  Pediatric Research. 2005;  57 755-759
  • 63 Treem WR. Beta oxidations defects.  Biochemistry and clinical. Clinics in Liver Disease. 1999;  3 ((1)) 49-67
  • 64 Clay AS, Behnia M, Brown KK. Mitochondrial disease. A pulmonary and critical-care medicine perspective.  Chest. 2001;  120 634-648
  • 65 Cohen G, Malcolm G, Henderson-Smart D. Ventilatory response of the newborn infant to mild hypoxia.  Pediatric Pulmonology. 1998;  24 ((3)) 163-172
  • 66 Hafström O, Milerad J, Sandberg KL. et al . Cardiorespiratory effects of nicotine exposure during development.  Respiratory Physiology & Neurobiology. 2005;  149 325-341
  • 67 Longo LD. The biological effects of carbon monoxide on the pregnant woman, fetus, and newborn infant.  Am J Obstet Gynecol. 1977;  129 69-99
  • 68 Knochel J. The pathophysiology and clinical characteristics of severe hypophosphatemia.  Arch Intern Med. 1977;  137 203-220
  • 69 Petri E. Pathologische Anatomie und Histologie der Vergiftungen. Handbuch der Speziellen Pathologischen Anatomie und Histologie. Henke F, Lubarsch O, Hrsg. Berlin Verlag von Julius Springer 1930: 189-207
  • 70 Forster M, Goodwin SR, Williams C. et al . Recurrent acute life-threatening events and lactic acidosis caused by chronic carbon monoxide poisoning in an infant.  Pediatrics. 1999;  104/3 e34
  • 71 Harper A, Croft-Baker J. Carbon monoxide poisoning: undetected by both patients and their doctors.  Age and Aging. 2004;  33 ((2)) 105-109
  • 72 Buehler JH, Berns AS, Webster JR. et al . Lactic acidosis from carboxyhemoglobinemia after smoke inhalation.  Ann Intern Med. 1975;  82 ((6)) 803-805
  • 73 Florkowski CM, Rossi ML, Carey MP. et al . Rhabdomyolysis and acute renal failure following carbon monoxide poisoning: Two case reports with muscle histopathology and enzyme activities.  Journal of Toxicology: Clinical Toxicology [J. Toxicol.: Clin. Toxicol.]. 1992;  30 ((3)) 443-454
  • 74 Kittredge RD. Pulmonary edema in acute carbon monoxide poisoning.  Am J Roentgenol. 1971;  113 ((4)) 680-681
  • 75 Storm JE, Fechter LD. Prenatal carbon monoxide exposure differentially affects postnatal weight and monamine concentrations in rat brain regions.  Toxicol Appl Pharmacol.. 1985;  81 ((1)) 139-140
  • 76 Weber U, Hüppe T, Niehaus L. CT and MRT in severe hypophosphatemia with central nervous system involvement.  Neuroradiology. 2000;  42 ((2)) 112-114
  • 77 Das MSD Manual .Beers MH, Berkow R, Hrgs. 6. Deutsche Auflage. Reye-Syndrom Abschnitt 19-Pädiatrie 2000: S2852-S2853
  • 78 Bhutta AD, Savell van H, Schexnayder S. Reye's syndrome: Down but not out.  Southern Medical Journal. 2003;  96 ((1)) 43-45
  • 79 Huttenlocher PR, Trauner DA. Reye's syndrome in infancy.  Pediatrics. 1978;  62 ((1)) 84-90
  • 80 Sarti A, Cecchi F, Manetti A. et al . Arrhythmias and ischemia-like ECG changes in Reye's syndrome.  Intensive Care Medicine. 1996;  22 ((1)) 62-64
  • 81 Larrick JW, Kunkel SL. Is Reye's syndrome caused by augmented release of tumor necrosis factor?.  The Lancet. 1986;  328 ((8499)) 132-133
  • 82 DeVivo DC, Keating JP, Haymond MW. Reye syndrome: Results of intensive support care.  The Journal of Pediatrics. 1975;  87 ((6)) 875-880
  • 83 Schrenck T von. Internistische Komplikationen nach Ecstasy.  Dt Ärztebl. 1999;  96 ((6)) A347-A352
  • 84 Gaffin SL, Hubbard RW. Pathophysiology of heatstroke. In Mediacal Aspects of Harsh Environments. Vol. 1. Lounsbury DE, Bellamy RF (eds) Washington, DC: Office of the Surgeon General, Department of the Army, USA 2001
  • 85 Yu S, Lu K, Lin S. et al . Energy metabolism in exertional heat stroke with acute renal failure.  Nephrology Dialysis Transplantation. 1997;  12 ((10)) 2087-2092
  • 86 Dunker M, Rehm M, Briegel J. et al . Anstrengungsinduzierter Hitzschlag Tod durch „Ausschwitzen”: Letales Multiorganversagen durch akzidentielle Körpertemperaturerhöhung bei einem 23-jährigen Sportler.  Der Anästhesist. 2001;  50 ((7)) 500-505
  • 87 Bouchama A, Cafege A, Robertson W. et al . Mechanisms of hypophosphatemia in humans with heatstroke.  Journal of Applied Physiology. 1991;  71 ((1)) 328-332
  • 88 Dale DC, Petersdorf RG. Septic shock. In: Braunwald E, Isselbacher KJ et al. (eds) Harrison's Principles of Internal Medicine 11th ed. Mc Graw-Hill Book Company New York et al. 1987
  • 89 Bollaert PE, Levy B. et al . Hemodynamic and metabolic effects of rapid correction of hypophosphatemia in patients with septic shock.  Chest. 1995;  107 ((6)) 1698-1701
  • 90 Bauer M, Reinhart K. Ätiologie und Diagnostik des septischen Organversagens.  Intensivmedizin und Notfallmedizin. 2004;  41 ((7)) 465-475
  • 91 Betrosian A, Thireos E. et al . Bacterial sepsisinduced rhabdomyolysis.  Intensive Care Medicine. 1999;  25 ((5)) 469-474
  • 92 Crouser ED. Mitochondrial dysfunction in septic shock and multi-ple organ dysfunction syndrome.  Mitochondrion. 2004;  4 ((5–6)) 729-741
  • 93 Brealey D, Singer M. Mitochondrial dysfunction in sepsis.  Curr Infect Dis Rep.. 2003;  5 ((5)) 365-371
  • 94 Opdal SH, Rognum TO. The sudden infant death syndrome gene: does it exist?.  Pediatrics. 2004;  114 ((4)) e506-e512
  • 95 Hornstra G. Essential fatty acids in mothers and their neonates.  American Journal of Clinical Nutrition. 2000;  71 ((5)) S1262-S1269
  • 96 Herrera E, Amusquivar E, López-Soldado I. et al . Maternal lipid metabolism and placental lipid transfer.  Horm Res.. 2006;  65 ((3)) 59-64
  • 97 Peterson DR, vanBelle G, Chinn NM. Sudden infant death syndrome and maternal age: etiologic implications.  JAMA. 1982;  247 ((16)) 2250-2252
  • 98 Getahun D, Amre D, Rhoads GG. et al . Maternal and obstetric risk factors for sudden infant death syndrome in the United States.  Obstetrics and Gynecology. 2004;  103 646-652
  • 99 Cochran-Black DL, Cowan LD, Neas BR. The relation between newborn hemoglobin F fractions and risk factors for sudden infant death syndrome.  Archives of pathology and laboratory medicine. 2000;  125 ((2)) 211-217
  • 100 Giulian GG, Gilbert EF, Moss RL. Elevated fetal hemoglobin levels in sudden infant death syndrome.  NEJM. 1987;  316 1122-1126
  • 101 Gruslin A, Perkins SL. et al . Maternal smoking and fetal erythropoietin levels.  Obstetrics and Gynecology. 2000;  95 561-564
  • 102 Carroll JL. Plasticity in respiratory motor control. Invited Review: Developmental plasticity in respiratory control.  J Appl Physiol. 2003;  94 375-389
  • 103 Richardson DB, Wing S, Lorey F. et al . Adult hemoglobin levels at birth and risk of sudden infant death syndrome.  Arch Pediatr Adolesc Med. 2004;  158 ((4)) 366-371
  • 104 Neff RA, Simmens SJ, Evans C. et al . Prenatal nicotine exposure alters central cardiorespiratory responses to hypoxia in rats: implications for sudden infant death syndrome.  The Journal of Neuroscience. 2004;  24 ((42)) 9261-9268
  • 105 Xiao DaL, Huang X, Yang S. et al . Direct effects of nicotine on contractility of the uterine artery in pregnancy.  JPET. 2007;  322 180-185
  • 106 Cole PV, Hawkins LH, Roberts D. Smoking during pregnancy and its effects on the fetus.  Journal of Obstetrics and Gynaecology of the British Commonwealth. 1972;  79 ((8)) 782-787
  • 107 Cera di E, Doyle ML, Morgan M. et al . Carbon monoxide and oxygen binding to human hemoglobin F.  Biochemistry. 1989;  28 2631-2638
  • 108 Geisler SL, Rost H-D, Rupp G. Sympathicusaktivität während experimentell erzeugter Hypoxämie beim Menschen.  Lung. 1975;  151 ((4)) 297-305
  • 109 Oncken CA, Henry KM, Campbell WA. et al . Effect of maternal smoking on fetal catecholamine concentrations at birth.  Pediatric Research. 2003;  53 119-124
  • 110 Divers  Jr  WA, Wilkes MM, Babaknia A. et al . Maternal smoking and elevation of catecholamines and metabolites in the amniotic fluid.  American Journal of Obstetrics and Gynecology. 1981;  141 ((6)) 625-628
  • 111 Quigley ME, Sheehan KL, Wilkes MM. et al . Effects of maternal smoking on circulating catecholamine levels and fetal heart rate.  American Journal of Obstetrics and Gynecology. 1979;  133 ((6)) 685-690
  • 112 Sovik S, Lossius K, Eriksen M. et al . Development of oxygen sensitivity in infants of smoking mothers.  Early Hum Dev.. 1999;  56 ((2–3)) 217-232
  • 113 Horne RS, Parslow PM, Harding R. Respiratory control and arousal in sleeping infants.  Paeditr Respi Rev.. 2004;  5 ((3)) 190-193
  • 114 Meny RG, Carroll JL, Carbone MT. et al . Cardiorespiratory recordings from infants dying suddenly and unexpectedly at home.  Pediatrics. 1994;  93 ((1)) 44-49
  • 115 Southall DP, Stevens V. et al . Sinus tachycardia in term infants preceding sudden infant death.  European Journal of Pediatrics. 1988;  147 ((1)) 74-78
  • 116 Kelly DH, Golub H, Shannon DC. Pneumograms in infants who subsequently died of sudden infant death syndrome.  J Pediatr. 1986;  109 ((2)) 249-254
  • 117 Newsletter of the National SIDS Resource Center: SIDS Research, Part II .Current and future directions. SIDS Network 1995–2008
  • 118 Moore LG. Fetal growth restriction and maternal oxygen transport during high altitude pregnancy.  High Altitude Medicine & Biology. 2003;  4 ((2)) 141-156
  • 119 Kohlendorfer U, Kiechl S, Sperl W. Living at high altitude and risk of sudden infant death syndrome.  Arch Dis Child. 1998;  79 506-509
  • 120 Malloy MH. Size for gestational age at birth: impact on risk for sudden infant death and other causes of death, USA 2002. Arch Dis Child Fetal and Neonatal Edition. 2007 92: F473-F478
  • 121 Saugstad LF. Optimal foetal growth in the reduction of learning and behavior disorder and prevention of sudden infant death (SIDS) after the first month.  Int J Psychophysiol.. 1997;  27 ((2)) 107-121 , discussion 123-124
  • 122 Dunne KP, Matthews TG. Hypothermia and sudden infant death syndrome.  Arch Dis Child. 1988;  63 ((4)) 438-440
  • 123 Ellis J. Neonatal hypothermia.  Journal of Neonatal Nursing. 2005;  11 ((2)) 76-82
  • 124 White MD. Components and mechanisms of thermal hyperpnea.  J Appl Physiol.. 2006;  101 655-663
  • 125 Rohlicek CV, Saiki C, Matsuoka T. et al . Oxygen transport in conscious newborn dogs during hypoxic hypometabolism.  J Appl Physiol. 1998;  84 ((3)) 763-768
  • 126 Iwase M, Izumizaki M, Kanamaru M. et al . Effects of hyperthermia on ventilation and metabolism during hypoxia in conscious mice.  Jpn J Physiol.. 2004;  54 53-59
  • 127 Kahraman L, Thach BT. Inhibitory effects of hyperthermia on mechanisms involved in autoresuscitation from hypoxic apnea in mice: a model for thermal stress causing SIDS.  J Appl Physiol. 2004;  97 669-674
  • 128 Maskrey M. Influence of body temperature on responses to hypoxia and hypercapnia: Implications for SIDS.  Clinical and experimental Pharmacology and Physiology. 1995;  22 ((8)) 527-532
  • 129 Mortola JP. Influence of temperature on metabolism and breathing during mammalian ontogenesis.  Respiratory Physiology and Neurobiology. 2005;  149 ((1–3)) 155-164
  • 130 Tuffnell CS, Petersen SA, Wailoo MP. Prone sleeping infants have a reduced ability to lose heat.  Early Hum Dev. 1995;  43 ((2)) 109-116
  • 131 Tuffnell CS, Petersen SA, Wailoo MP. Factors affecting rectal temperature in infancy.  Arch Dis Child.. 1995;  73 443-444
  • 132 Skadberg ST, Markestad T. Behaviour and physiological responses during prone and supine sleep in early infancy.  Arch Dis Child. 1997;  76 320-324
  • 133 Kato I, Scaillet S, Groswasser J. et al . Spontaneous arousability in prone and supine position in health infants.  Sleep. 2006;  29 ((6)) 785-790
  • 134 Stanton AN, Scott DJ, Downham MA. Is overheating a factor in some unexpected infant deaths?.  Lancet. 1980;  17 ((1)) 1054-1057
  • 135 Moriske HJ. et al . Indoor air pollution by different heating systems: coal burning, open fireplace and central heating.  Toxicol Lett. 1996;  88 ((1–3)) 349-354
  • 136 Klonoff-Cohen H, Lam PK, Lewis A. Outdoor carbon monoide, nitrogen dioxide, and sudden infant death syndrome.  Arch Dis Child. 2005;  90 750-753
  • 137 Hauck FR, Omojukun OO, Siadaty MR. Do pacifiers reduce the risk of sudden infant death syndrome? A metaanalysis.  Pediatrics. 2005;  116 ((5)) e716-e723
  • 138 Genest S-E, Gulemetova R, Laforest S. et al . Neonatal maternal separation and sex-specific plasticity of the hypoxic ventilatory response in awake rats.  J Physiol. 2004;  554 ((2)) 543-557
  • 139 Krous HF, Chadwick AE, Haas E. et al . Sudden infant death while awake.  Forensic Science, Medicine, and Pathology. 2007;  , published online 11 september 2007
  • 140 Williams SM, Mitchell EA, Taylor BJ. Are risk factors for sudden infant death syndrome different at night?.  Arch Dis Child. 2002;  87 274-278
  • 141 Blair PS, Platt MW, Smith IJ. CESDI SUDI Research Group . Sudden infant death syndrome and the time of death: factors associated with night-time and day-time deaths.  International Journal of Epidemiology. 2006;  35 ((6)) 1563-1569
  • 142 Mantagos S, Moustogiannis A, Vagenakis AG. Diurnal variation of plasma cortisol levels in infancy.  J Pediatr Endocrinol Metab. 1998;  11 ((4)) 549-553
  • 143 Hampl R, Starka L, Jansky L. Steroids and thermogenesis.  Physiol. Res. 2006;  55 123-131
  • 144 Buttgereit F, Bumester G-R, Brand MD. Bioenergetics of immun functions: fundamental and therapeutic aspects.  Immunology today. 2000;  21 ((4)) 192-199
  • 145 Brown GC. Control of respiration and ATP synthesis in mammalian mitochondria and cells.  Biochem J. 1992;  284 1-13
  • 146 Birk AV, Broekman MJ, Gladek EM. et al . Role of extracellular ATP-metabolism in regulation of platelet reactivity.  Journal of Laboratory and Clinical Medicine. 2002;  140 ((3)) 166-175
  • 147 Burnstock G. Physiology and pathophysiology of purinergic neurotransmission.  Physiol Rev. 2007;  87 659-797
  • 148 Mayer CA, Haxhiu MA, Martin RJ, Wilson CG. Adenosine A2A-receptors mediate GABAergic inhibition of respiration in immature rats.  J Appl Physiol. 2006;  100 91-97
  • 149 Gourine AV. On the peripheral and central chemoreception and control of breathing: an emerging role of ATP.  J Phyriol. 2005;  56 ((3)) 715-724
  • 150 Smith MP, Kaji A, Young KD. et al . Presentation and survival of prehospital apparent sudden infant death syndrome.  Prehospital emergency care. 2004;  9 ((2)) 181-185
  • 151 Goldwater PN. Sudden infant death Syndrome: a critical review of approaches to research.  Archives of Disease in Childhood. 2003;  88 1095-1100
  • 152 Berry PJ. Pathological findings in SIDS.  Journal of Clinical Pathology. 1992;  45 11-16
  • 153 Krous HF, Haas EA. et al . Delayed death in sudden infant death syndrome: A San Diego SIDS/SUDC Research Project 15-year population-based report.  Forensic Science International. 2007;  , [Article in Press]
  • 154 Paterson D, Trachtenberg FL. et al . Multiple serotonergic brainstem abnormalties in sudden infant death syndrome.  JAMA. 2006;  296 ((17)) 2124-2132
  • 155 Biondo B, Magagnin S, Bruni B. et al . Glial and neuronal alterations in the nucleus tractus solitarii of sudden infant death syndrome victims.  Acta Neuropathologica. 2004;  108 ((4)) 309-318
  • 156 Riße M, Weiler G, Benker G. Vergleichende histologische und hormonelle Untersuchungen der Schilddrüse unter besonderer Berücksichtigung des plötzlichen Kindstodes (SIDS).  International Journal of Legal Medicine. 1986;  96 ((1)) 31-38
  • 157 Kay MA, McCabe EDB. Escherichia coli sepsis and prolonged hypophosphatemia following exertional heat stroke.  Pediatrics. 1990;  86 ((2)) 307-309
  • 158 Weinberger B, Carbone T. et al . Effects of perinatal hypoxia on serum unbound free fatty acids and lung inflammatory mediators.  Biology of the Neonate. 2001;  79 61-66
  • 159 Madjdpour C, Jewell UR. et al . Decreased alveolar oxygen induces lung inflammation.  Am J Physiol Lung Cell Mol Physiol. 2003;  284 L360-L367
  • 160 Ghezzi P, Dinarello CA, Bianchi M. et al . Hypoxia increases production of Interleukin-1 and tumor necrosis factor by human mononuclear cells.  Cytokine. 1991;  3 ((3)) 189-194
  • 161 Prandota J. Possible pathomechanisms of sudden infant death syndrome: key role of chronic hypoxia, infection/inflammation states, cytokine irregularities, and metabolic trauma in genetically predisposed infants.  Am J Ther. 2004;  11 ((6)) 517-546
  • 162 Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells.  Infection and immunity. 2005;  73 ((4)) 1907-1916
  • 163 Lüthje J. Extracellular adenine compounds, red blood cells and haemostasis: Facts and hypotheses.  Blut. 1989;  59 367-374
  • 164 Weinmann W, Bohnert M. Lethal monointoxication by overdosage of MDEA.  Forensic Science International. 1998;  91 ((2)) 91-101
  • 165 Kumazawa T, Watanabe-Suzuki K, Seno H. et al . A curious autopsy case of accidental carbon monoxide poisoning in a motor vehicle.  Leg Med (Tokyo). 2000;  2 ((3)) 181-185
  • 166 Blood-Siegfried J. Evidence for infection, inflammation and shock in sudden infant death: parallels between a neonatal rat model of sudden infant death and infants who died of sudden infant death syndrome.  Innate Immunity. 2008;  14 ((3)) 145-152
  • 167 Highet AR. An infectious aetiology of sudden infant death syndrome.  Journal of Applied Microbiology. 2008;  105 ((3)) 625-635
  • 168 Kuzawa CW. Adipose tissue in human infancy and childhood: An evolutionary perspective.  American Journal of Physical Anthropology. 1999;  107 ((S27)) 177-209
  • 169 Martin RJ, DiFiore JM. et al . Persistence of the biphasic ventilatory response to hypoxia in preterm infants.  The Journal of Pediatrics. 1998;  960-964
  • 170 Verbeek MMA, Richardson HL. et al . Arousal and ventilatory responses to mild hypoxia in sleeping preterm infants.  Journal of Sleep Research. 2008;  17 ((3)) 344-353
  • 171 Sperl W. Der plötzliche Kindstod und die Angehörigen.  Journal für Anästhesie und Intensivbehandlung. 1996; 
  • 172 Malloy MH, Hoffman HJ. Prematurity, sudden infant death syndrome, and age of death.  Pediatrics. 1995;  96 ((3)) 464-471
  • 173 Bell EF, Strauss RG, Widness JA. et al . Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants.  Pediatrics. 2005;  115 ((6)) 1685-1691
  • 174 Stute H, Greiner B, Linderkamp O. Effect of blood transfusion on cardiorespiratory abnormalities in preterm infants.  Arch Dis Child Fetal Neonatal Ed. 1995;  72 ((3)) 194-196
  • 175 Giannakopoulou C, Korakaki E, Manoura A. et al . Significance of hypocarbia in the development of periventricular leukomalacia in preterm infants.  Pediatrics International. 2004;  46 268-273
  • 176 Klinger G, Beyene J, Shah P. et al .Do hyperoxaemia and hypocapnia add to the risk brain injury after intrapartum asphyxia?. Arch Dis Child Fetal and Neonatal Edition. 2005 90: F49-F52
  • 177 Greisen G, Munck H, Lou H. Severe Hypocarbia in preterm infants and neurodevelopmental deficit.  Acta Paediatr Scand. 1987;  76 401-404
  • 178 Collins MP, Lorenz JM, Jetton JR. et al . Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants.  Pediatric research. 2001;  50 712-719
  • 179 Florant GL. Lipid metabolism in hibernators: The importance of essential fatty acids.  American Zoologist. 1998;  38 ((2)) 331-340
  • 180 Hoyenga KB, Hoyenga KT. Gender and energy balance: sex differences in adaptations for feast and famine.  Physiol Behav. 1982;  28 ((3)) 545-563
  • 181 Valle A, Català-Niell A, Colom B. et al . Sex-related differences in energy balance in response to caloric restriction.  Am J Physiol Endocrinol Metab. 2005;  289 E15-E22
  • 182 Corwin MJ, Lester BM, Sepkoski C. et al . Newborn acoustic cry characteristics of infants subsequently dying of sudden infant death syndrome.  Pediatrics. 1995;  96 ((1)) 73-77
  • 183 Taylor BJ, Williams SM, Mitchell ERA. et al . Symptoms, sweating and reactivity of infants who die of SIDS compared with community controls. New Zealand National Cot Death Study Group.  J Pediadr Child Health. 1996;  32 ((4)) 316-322
  • 184 Riese ML. Newborn temperament and Sudden Infant Death Syndrome: A comparison of victims and their cotwins.  Journal of Applied Developmental Psychology. 2003;  23 ((6)) 643-653
  • 185 Naeye RL, Messmer  3 rd  J, Specht T. et al . Sudden infant death syndrome temperament before death.  J Pediatr. 1976;  88 ((3)) 511-515
  • 186 Blair PS, Nadin P, Cole TJ. Weight gain and sudden infant death syndrome: changes in weight z scores may identify infants at increased risk.  Arch Dis Child. 2000;  82 462-469
  • 187 Horvath GA, Davidson AG, Stockler-Ipsiroglu SG. et al . Newborn screening for MCAD deficiency: experience of the first three years in British Columbia, Canada.  Can J Public Health. 2008;  99 ((4)) 276-280
  • 188 Staubli M, Ott P, Waber U. et al . Erythrocyte adenosine triphosphate depletion during voluntary hyperventilation.  J Appl Physiol. 1985;  59 ((4)) 1196-2000
  • 189 Durlach J. New data on the importance of gestational Mg deficiency.  Journal of the American College of Nutrition. 2004;  23 ((6)) S694-S700
  • 190 Caddell JL. Magnesium deficiency promotes muscle weakness, contributing to the risk of sudden infant death (SIDS) in infants sleeping prone.  Magnes Res.. 2001;  14 ((1–2)) 39-50
  • 191 Depeint F, Bruce WR, Shangari N. et al . Mitochondrial function and toxicity: Role of the B vitamin family on mitochondrial energy metabolism.  Chemico-Biological Interactions. 2006;  163 ((1–2)) 94-112
  • 192 Holland PC, Wilkinson AR, Diez J. et al . Prenatal deficiency of phosphate, phosphate supplementation, and rickets in very-low-birthsweight infants.  Lancet. 1990;  335 697-701
  • 193 Bertocci LA, Mize CE, Uauy R. Muscle phosphorus energy state in very-low-birth-weight infants: effects of exercise.  Am J Physiol Endocrinol Metab. 1992;  262 E289-E294
  • 194 De Halleux V, Gagnon C, Bard H. Decreasing oxygen saturation in very early preterm newborn infants after transfusion. Arch Dis Child Fetal and Neonatal Edition. 2003 88: F163
  • 195 Simakajornboon N, Vlasic V, Li H. et al . Effect of prenatal nicotine exposure on biphasic hypoxic ventilator response and protein kinase C expression in caudal brain stem of developing rats.  J Appl Physiol. 2004;  96 2213-2219
  • 196 Peyronnet J, Roux JC. et al . Prenatal hypoxia impairs the postnatal development of neural and functional chemoafferent pathway in rat.  The Journal of Physiology. 2000;  524 ((2)) 525-537
  • 197 Hafström O, Milerad J, Sundell HW. Altered breathing pattern after prenatal nicotine exposure in the young lamb.  American Journal of Respiratory and Critical Care Medicine. 2002;  166 92-97
  • 198 Haddad GG, Leistner HL, Lai TL. et al . Ventilation and ventilatory patterns during sleep in aborted sudden infant death syndrome.  Pediatr Res.. 1981;  15 ((5)) 879-883

Korrespondenzadresse

Dr. med. E. Deixler

IV. Medizinische Abteilung

Rheumatologie und Klinische Immunologie

Städtisches Klinikum München GmbH

Krankenhaus München-Bogenhausen

Englschalkinger Straße 77

81925 München

Phone: 089/9270 2101

Fax: 089/9270 2606

Email: e.deixler@gmx.de