Subscribe to RSS
DOI: 10.1055/s-0029-1233308
Genetics of Pulmonary Arterial Hypertension
Publication History
Publication Date:
24 July 2009 (online)
ABSTRACT
Tremendous progress has been made in understanding the genetics of hereditable pulmonary arterial hypertension (HPAH) since its description in the 1950s. Germline mutations in the gene coding bone morphogenetic receptor type 2 (BMPR2) are detectable in the majority of cases of HPAH, and in a small proportion of cases of idiopathic pulmonary arterial hypertension (IPAH). HPAH is an autosomal dominant disease characterized by reduced penetrance, variable expressivity, female predominance, and genetic anticipation. These characteristics suggest that endogenous and exogenous factors modify disease expression and areas of emphasis for future investigation. The variable clinical expression makes genetic counseling complex because the majority of carriers of a BMPR2 mutation will not be diagnosed with the disease. This issue will become increasingly important, as clinical testing for BMPR2 mutations is now available for the evaluation of patients and family members with HPAH and IPAH.
KEYWORDS
Bone morphogenetic protein receptor 2 - pulmonary arterial hypertension - genetics - modifiers - hereditary hemorrhagic telangiectasia
REFERENCES
- 1 Dresdale D T, Schultz M, Michtom R J. Primary pulmonary hypertension, I: Clinical and hemodynamic study. Am J Med. 1951; 11 686-705
- 2 Dresdale D T, Michtom R J, Schultz M. Recent studies in primary pulmonary hypertension, including pharmacodynamic observations on pulmonary vascular resistance. Bull N Y Acad Med. 1954; 30 195-207
- 3 Machado R, Chung W, Eickelberg O et al.. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol. , In press
- 4 Loyd J E, Primm R K, Newman J H. Familial primary pulmonary hypertension: clinical patterns. Am Rev Respir Dis. 1984; 129 194-197
- 5 Thomas A Q, Gaddipati R, Newman J H, Loyd J E. Genetics of primary pulmonary hypertension. Clin Chest Med. 2001; 22 477-491 , ix
- 6 Thomson J R, Machado R D, Pauciulo M W et al.. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family. J Med Genet. 2000; 37 741-745
- 7 Loyd J E, Butler M G, Foroud T M, Conneally P M, Phillips III J A, Newman J H. Genetic anticipation and abnormal gender ratio at birth in familial primary pulmonary hypertension. Am J Respir Crit Care Med. 1995; 152 93-97
- 8 Rich S, Dantzker D R, Ayres S M et al.. Primary pulmonary hypertension: a national prospective study. Ann Intern Med. 1987; 107 216-223
- 9 Nichols W C, Koller D L, Slovis B et al.. Localization of the gene for familial primary pulmonary hypertension to chromosome 2q31-32. Nat Genet. 1997; 15 277-280
- 10 Morse J H, Barst R J. Detection of familial primary pulmonary hypertension by genetic testing. N Engl J Med. 1997; 337 202-203
- 11 Lane K B, Machado R D, Pauciulo M W The International PPH Consortium et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet. 2000; 26 81-84
- 12 Deng Z, Morse J H, Slager S L et al.. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet. 2000; 67 737-744
- 13 Newman J H, Phillips III J A, Loyd J E. Narrative review: the enigma of pulmonary arterial hypertension: new insights from genetic studies. Ann Intern Med. 2008; 148 278-283
- 14 Sztrymf B, Yaïci A, Girerd B, Humbert M. Genes and pulmonary arterial hypertension. Respiration. 2007; 74 123-132
- 15 Newman J H, Trembath R C, Morse J A et al.. Genetic basis of pulmonary arterial hypertension: current understanding and future directions. J Am Coll Cardiol. 2004; 43(12, Suppl S) 33S-39S
- 16 Gaine S P, Rubin L J. Primary pulmonary hypertension. Lancet. 1998; 352 719-725
- 17 Machado R D, James V, Southwood M et al.. Investigation of second genetic hits at the BMPR2 locus as a modulator of disease progression in familial pulmonary arterial hypertension. Circulation. 2005; 111 607-613
- 18 Irey N S, Manion W C, Taylor H B. Vascular lesions in women taking oral contraceptives. Arch Pathol. 1970; 89 1-8
- 19 Irey N S, Norris H J. Intimal vascular lesions associated with female reproductive steroids. Arch Pathol. 1973; 96 227-234
- 20 Kleiger R E, Boxer M, Ingham R E, Harrison D C. Pulmonary hypertension in patients using oral contraceptives. A report of six cases. Chest. 1976; 69 143-147
- 21 Morse J H, Horn E M, Barst R J. Hormone replacement therapy: a possible risk factor in carriers of familial primary pulmonary hypertension. Chest. 1999; 116 847
- 22 Runo J R, Loyd J E. Primary pulmonary hypertension. Lancet. 2003; 361 1533-1544
- 23 Sztrymf B, Coulet F, Girerd B et al.. Clinical outcomes of pulmonary arterial hypertension in carriers of BMPR2 mutation. Am J Respir Crit Care Med. 2008; 177 1377-1383
- 24 Elliott C G, Glissmeyer E W, Havlena G T et al.. Relationship of BMPR2 mutations to vasoreactivity in pulmonary arterial hypertension. Circulation. 2006; 113 2509-2515
- 25 Montani D, Marcelin A G, Sitbon O, Calvez V, Simonneau G, Humbert M. Human herpes virus 8 in HIV and non-HIV infected patients with pulmonary arterial hypertension in France. AIDS. 2005; 19 1239-1240
- 26 Archer S L, Michelakis E D. An evidence-based approach to the management of pulmonary arterial hypertension. Curr Opin Cardiol. 2006; 21 385-392
- 27 Rosenzweig E B, Morse J H, Knowles J A et al.. Clinical implications of determining BMPR2 mutation status in a large cohort of children and adults with pulmonary arterial hypertension. J Heart Lung Transplant. 2008; 27 668-674
- 28 Sztrymf B, Yaici A, Jaïs X, Simonneau G, Sitbon O, Humbert M. Genetics of pulmonary arterial hypertension: recent data and practical applications [in French]. Rev Mal Respir. 2005; 22(5 Pt 1) 796-805
- 29 Pearson C E, Nichol Edamura K, Cleary J D. Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet. 2005; 6 729-742
- 30 Armanios M, Chen J L, Chang Y P et al.. Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc Natl Acad Sci U S A. 2005; 102 15960-15964
- 31 Newman J H. Pulmonary hypertension. Am J Respir Crit Care Med. 2005; 172 1072-1077
- 32 Morse J H, Jones A C, Barst R J, Hodge S E, Wilhelmsen K C, Nygaard T G. Familial primary pulmonary hypertension locus mapped to chromosome 2q31-q32. Chest. 1998; 114(1, Suppl) 57S-58S
- 33 Morse J H, Jones A C, Barst R J, Hodge S E, Wilhelmsen K C, Nygaard T G. Mapping of familial primary pulmonary hypertension locus (PPH1) to chromosome 2q31-q32. Circulation. 1997; 95 2603-2606
- 34 Machado R D, Aldred M A, James V et al.. Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension. Hum Mutat. 2006; 27 121-132
- 35 Johnson D W, Berg J N, Baldwin M A et al.. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996; 13 189-195
- 36 McAllister K A, Grogg K M, Johnson D W et al.. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet. 1994; 8 345-351
- 37 Harrison R E, Flanagan J A, Sankelo M et al.. Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia. J Med Genet. 2003; 40 865-871
- 38 Trembath R C, Thomson J R, Machado R D et al.. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N Engl J Med. 2001; 345 325-334
- 39 Chaouat A, Coulet F, Favre C et al.. Endoglin germline mutation in a patient with hereditary haemorrhagic telangiectasia and dexfenfluramine associated pulmonary arterial hypertension. Thorax. 2004; 59 446-448
- 40 Harrison R E, Berger R, Haworth S G et al.. Transforming growth factor-beta receptor mutations and pulmonary arterial hypertension in childhood. Circulation. 2005; 111 435-441
- 41 Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003; 113 685-700
- 42 Fernández-L A, Sanz-Rodriguez F, Blanco F J, Bernabéu C, Botella L M. Hereditary hemorrhagic telangiectasia, a vascular dysplasia affecting the TGF-beta signaling pathway. Clin Med Res. 2006; 4 66-78
- 43 De Caestecker M, Meyrick B. Bone morphogenetic proteins, genetics and the pathophysiology of primary pulmonary hypertension. Respir Res. 2001; 2 193-197
- 44 Derynck R, Zhang Y E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003; 425 577-584
- 45 Davies R J, Morrell N W. Molecular mechanisms of pulmonary arterial hypertension: role of mutations in the bone morphogenetic protein type II receptor. Chest. 2008; 134 1271-1277
- 46 Yang X, Long L, Southwood M et al.. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res. 2005; 96 1053-1063
- 47 Perros F, Dorfmüller P, Humbert M. Current insights on the pathogenesis of pulmonary arterial hypertension. Semin Respir Crit Care Med. 2005; 26 355-364
- 48 Said S I. Mediators and modulators of pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2006; 291 L547-L548
- 49 Scharpfenecker M, van Dinther M, Liu Z et al.. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci. 2007; 120(Pt 6) 964-972
- 50 Eddahibi S, Humbert M, Sediame S et al.. Imbalance between platelet vascular endothelial growth factor and platelet-derived growth factor in pulmonary hypertension: effect of prostacyclin therapy. Am J Respir Crit Care Med. 2000; 162(4 Pt 1) 1493-1499
- 51 Hansmann G, Wagner R A, Schellong S et al.. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation. 2007; 115 1275-1284
- 52 Machado R D, Pauciulo M W, Thomson J R et al.. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am J Hum Genet. 2001; 68 92-102
- 53 Koehler R, Grünig E, Pauciulo M W et al.. Low frequency of BMPR2 mutations in a German cohort of patients with sporadic idiopathic pulmonary arterial hypertension. J Med Genet. 2004; 41 e127
- 54 Morisaki H, Nakanishi N, Kyotani S, Takashima A, Tomoike H, Morisaki T. BMPR2 mutations found in Japanese patients with familial and sporadic primary pulmonary hypertension. Hum Mutat. 2004; 23 632
- 55 Elliott C G. Genetics of pulmonary arterial hypertension: current and future implications. Semin Respir Crit Care Med. 2005; 26 365-371
- 56 Cogan J D, Pauciulo M W, Batchman A P et al.. High frequency of BMPR2 exonic deletions/duplications in familial pulmonary arterial hypertension. Am J Respir Crit Care Med. 2006; 174 590-598
- 57 Aldred M A, Vijayakrishnan J, James V et al.. BMPR2 gene rearrangements account for a significant proportion of mutations in familial and idiopathic pulmonary arterial hypertension. Hum Mutat. 2006; 27 212-213
- 58 Fujiwara M, Yagi H, Matsuoka R et al.. Implications of mutations of activin receptor-like kinase 1 gene (ALK1) in addition to bone morphogenetic protein receptor II gene (BMPR2) in children with pulmonary arterial hypertension. Circ J. 2008; 72 127-133
- 59 Rudarakanchana N, Flanagan J A, Chen H et al.. Functional analysis of bone morphogenetic protein type II receptor mutations underlying primary pulmonary hypertension. Hum Mol Genet. 2002; 11 1517-1525
- 60 Nishihara A, Watabe T, Imamura T, Miyazono K. Functional heterogeneity of bone morphogenetic protein receptor-II mutants found in patients with primary pulmonary hypertension. Mol Biol Cell. 2002; 13 3055-3063
- 61 Khajavi M, Inoue K, Lupski J R. Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur J Hum Genet. 2006; 14 1074-1081
- 62 Noensie E N, Dietz H C. A strategy for disease gene identification through nonsense-mediated mRNA decay inhibition. Nat Biotechnol. 2001; 19 434-439
- 63 Kuzmiak H A, Maquat L E. Applying nonsense-mediated mRNA decay research to the clinic: progress and challenges. Trends Mol Med. 2006; 12 306-316
- 64 Humbert M, Deng Z, Simonneau G et al.. BMPR2 germline mutations in pulmonary hypertension associated with fenfluramine derivatives. Eur Respir J. 2002; 20 518-523
- 65 Phillips III J A, Poling J S, Phillips C A et al.. Synergistic heterozygosity for TGFbeta1 SNPs and BMPR2 mutations modulates the age at diagnosis and penetrance of familial pulmonary arterial hypertension. Genet Med. 2008; 10 359-365
- 66 Hamid R, Cogan J D, Austin E D et al.. Penetrance of pulmonary arterial hypertension is modulated by the expression of normal BMPR2 allele. Hum Mutat. 2009; 30 649-654
- 67 Atkinson C, Stewart S, Upton P D et al.. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation. 2002; 105 1672-1678
- 68 Abraham W T, Raynolds M V, Badesch D B et al.. Angiotensin-converting enzyme DD genotype in patients with primary pulmonary hypertension: increased frequency and association with preserved haemodynamics. J Renin Angiotensin Aldosterone Syst. 2003; 4 27-30
- 69 Hoeper M M, Tacacs A, Stellmacher U, Lichtinghagen R. Lack of association between angiotensin converting enzyme (ACE) genotype, serum ACE activity, and haemodynamics in patients with primary pulmonary hypertension. Heart. 2003; 89 445-446
- 70 Koehler R, Olschewski H, Hoeper M, Janssen B, Grünig E. Serotonin transporter gene polymorphism in a cohort of German patients with idiopathic pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension. Chest. 2005; 128(6, Suppl) 619S
- 71 Machado R D, Koehler R, Glissmeyer E et al.. Genetic association of the serotonin transporter in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2006; 173 793-797
- 72 Willers E D, Newman J H, Loyd J E et al.. Serotonin transporter polymorphisms in familial and idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2006; 173 798-802
- 73 Remillard C V, Tigno D D, Platoshyn O et al.. Function of Kv1.5 channels and genetic variations of KCNA5 in patients with idiopathic pulmonary arterial hypertension. Am J Physiol Cell Physiol. 2007; 292 C1837-C1853
- 74 Lee S L, Wang W W, Moore B J, Fanburg B L. Dual effect of serotonin on growth of bovine pulmonary artery smooth muscle cells in culture. Circ Res. 1991; 68 1362-1368
- 75 Liu Y, Suzuki Y J, Day R M, Fanburg B L. Rho kinase-induced nuclear translocation of ERK1/ERK2 in smooth muscle cell mitogenesis caused by serotonin. Circ Res. 2004; 95 579-586
- 76 Lee S L, Wang W W, Finlay G A, Fanburg B L. Serotonin stimulates mitogen-activated protein kinase activity through the formation of superoxide anion. Am J Physiol. 1999; 277(2 Pt 1) L282-L291
- 77 Hervé P, Launay J M, Scrobohaci M L et al.. Increased plasma serotonin in primary pulmonary hypertension. Am J Med. 1995; 99 249-254
- 78 Eddahibi S, Humbert M, Fadel E et al.. Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J Clin Invest. 2001; 108 1141-1150
- 79 Morrell N W. Pulmonary hypertension due to BMPR2 mutation: a new paradigm for tissue remodeling?. Proc Am Thorac Soc. 2006; 3 680-686
- 80 Morrell N W, Yang X, Upton P D et al.. Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-beta(1) and bone morphogenetic proteins. Circulation. 2001; 104 790-795
- 81 Zaiman A L, Podowski M, Medicherla S et al.. Role of TGF-{beta}/ALK5 kinase in monocrotaline-induced pulmonary hypertension. Am J Respir Crit Care Med. 2008; 177 896-905
- 82 Runo J R, Vnencak-Jones C L, Prince M et al.. Pulmonary veno-occlusive disease caused by an inherited mutation in bone morphogenetic protein receptor II. Am J Respir Crit Care Med. 2003; 167 889-894
- 83 Montani D, Achouh L, Dorfmüller P et al.. Pulmonary veno-occlusive disease: clinical, functional, radiologic, and hemodynamic characteristics and outcome of 24 cases confirmed by histology. Medicine (Baltimore). 2008; 87 220-233
- 84 Simonneau G, Galiè N, Rubin L J et al.. Clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2004; 43(12, Suppl S) 5S-12S
- 85 Abenhaim L, Moride Y, Brenot F International Primary Pulmonary Hypertension Study Group et al. Appetite-suppressant drugs and the risk of primary pulmonary hypertension. N Engl J Med. 1996; 335 609-616
- 86 Sztrymf B, Yaïci A, Jaïs X, Sitbon O, Simonneau G, Humbert M. Idiopathic pulmonary hypertension: what did we learn from genes?. Sarcoidosis Vasc Diffuse Lung Dis. 2005; 22(Suppl 1) S91-S100
- 87 Roberts K E, McElroy J J, Wong W P et al.. BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Eur Respir J. 2004; 24 371-374
- 88 Rubin L J. BMPR2 mutation and outcome in pulmonary arterial hypertension: clinical relevance to physicians and patients. Am J Respir Crit Care Med. 2008; 177 1300-1301
- 89 McGoon M, Gutterman D, Steen V American College of Chest Physicians et al. Screening, early detection, and diagnosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest. 2004; 126(1, Suppl) 14S-34S
- 90 Jones D L, Sandberg J C, Rosenthal M J, Saunders R C, Hannig V L, Clayton E W. What patients and their relatives think about testing for BMPR2. J Genet Couns. 2008; 17 452-458
- 91 Grünig E, Dehnert C, Mereles D et al.. Enhanced hypoxic pulmonary vasoconstriction in families of adults or children with idiopathic pulmonary arterial hypertension. Chest. 2005; 128(6, Suppl) 630S-633S
James E LoydM.D.
Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine
1161 21st Ave. South, T-1218 MCN, Vanderbilt University School of Medicine, Nashville, TN 37232-2578
Email: Jim.loyd@vanderbilt.edu