RSS-Feed abonnieren
DOI: 10.1055/s-0029-1234141
Heritability of Clot Formation
Publikationsverlauf
Publikationsdatum:
08. September 2009 (online)
ABSTRACT
The development of occlusive arterial and venous disease is contingent on the formation of a fibrin mesh that occurs following tissue damage and activation of the coagulation system. Clinical evidence indicates that fibrin structure and function are important determinants of cardiovascular risk, and the difference between clots formed from plasma and from purified fibrinogen highlights the importance of plasma factors in determining final clot structure. Twin, family, and case-control studies indicate there is a significant genetic contribution to variance in coagulation and fibrinolytic factors that may influence clot structure. Additionally, studies indicate a smaller but significant genetic contribution to fibrin structure, with a larger component provided by the environmental contribution. Future studies of the influence of post-translational modifications to fibrin(ogen) and other factors involved in clot formation may provide important insights into thrombotic disease mechanisms.
KEYWORDS
Heritability - clot formation - fibrin - factor XIII - fibrin structure
REFERENCES
- 1 Marenberg M E, Risch N, Berkman L F, Floderus B, de Faire U. Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med. 1994; 330(15) 1041-1046
- 2 Souto J C, Almasy L, Borrell M et al.. Genetic susceptibility to thrombosis and its relationship to physiological risk factors: the GAIT study. Genetic Analysis of Idiopathic Thrombophilia. Am J Hum Genet. 2000; 67(6) 1452-1459
- 3 Rijken D C, Dirkx S P, Luider T M, Leebeek F W. Hepatocyte-derived fibrinogen-related protein-1 is associated with the fibrin matrix of a plasma clot. Biochem Biophys Res Commun. 2006; 350(1) 191-194
- 4 Schröder V, Kohler H P. Effect of factor XIII Val34Leu on alpha2-antiplasmin incorporation into fibrin. Thromb Haemost. 2000; 84(6) 1128-1130
- 5 Lee K N, Jackson K W, Christiansen V J, Chung K H, McKee P A. A novel plasma proteinase potentiates alpha2-antiplasmin inhibition of fibrin digestion. Blood. 2004; 103(10) 3783-3788
- 6 Christiansen V J, Jackson K W, Lee K N, McKee P A. The effect of a single nucleotide polymorphism on human alpha 2-antiplasmin activity. Blood. 2007; 109(12) 5286-5292
- 7 Hoffman M. Alterations of fibrinogen structure in human disease. Cardiovasc Hematol Agents Med Chem. 2008; 6(3) 206-211
- 8 Dunn E J, Philippou H, Ariëns R A, Grant P J. Molecular mechanisms involved in the resistance of fibrin to clot lysis by plasmin in subjects with type 2 diabetes mellitus. Diabetologia. 2006; 49(5) 1071-1080
- 9 Dunn E J, Ariëns R A, Grant P J. The influence of type 2 diabetes on fibrin structure and function. Diabetologia. 2005; 48(6) 1198-1206
- 10 de Lange M, Snieder H, Ariëns R A, Spector T D, Grant P J. The genetics of haemostasis: a twin study. Lancet. 2001; 357(9250) 101-105
- 11 Ariëns R A, de Lange M, Snieder H, Boothby M, Spector T D, Grant P J. Activation markers of coagulation and fibrinolysis in twins: heritability of the prethrombotic state. Lancet. 2002; 359(9307) 667-671
- 12 Dunn E J, Ariëns R A, de Lange M et al.. Genetics of fibrin clot structure: a twin study. Blood. 2004; 103(5) 1735-1740
- 13 Fatah K, Silveira A, Tornvall P, Karpe F, Blombäck M, Hamsten A. Proneness to formation of tight and rigid fibrin gel structures in men with myocardial infarction at a young age. Thromb Haemost. 1996; 76(4) 535-540
- 14 Fatah K, Hamsten A, Blombäck B, Blombäck M. Fibrin gel network characteristics and coronary heart disease: relations to plasma fibrinogen concentration, acute phase protein, serum lipoproteins and coronary atherosclerosis. Thromb Haemost. 1992; 68(2) 130-135
- 15 Collet J P, Allali Y, Lesty C et al.. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler Thromb Vasc Biol. 2006; 26(11) 2567-2573
- 16 Weisel J W, Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Biophys J. 1992; 63(1) 111-128
- 17 Danesh J, Lewington S, Thompson S G Fibrinogen Studies Collaboration et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA. 2005; 294(14) 1799-1809
- 18 Salazar-Sánchez L, Leon M P, Cartin M et al.. The FXIIIVal34Leu, common and risk factors of venous thrombosis in early middle-age Costa Rican patients. Cell Biochem Funct. 2007; 25(6) 739-745
- 19 Scarabin P Y, Aillaud M F, Amouyel P Prospective Epidemiological Study of Myocardial Infarction et al. Associations of fibrinogen, factor VII and PAI-1 with baseline findings among 10,500 male participants in a prospective study of myocardial infarction—the PRIME Study. Thromb Haemost. 1998; 80(5) 749-756
- 20 Freeman M S, Mansfield M W, Barrett J H, Grant P J. Genetic contribution to circulating levels of hemostatic factors in healthy families with effects of known genetic polymorphisms on heritability. Arterioscler Thromb Vasc Biol. 2002; 22(3) 506-510
- 21 Tamaki T, Aoki N. Cross-linking of alpha 2-plasmin inhibitor and fibronectin to fibrin by fibrin-stabilizing factor. Biochim Biophys Acta. 1981; 661(2) 280-286
- 22 Valnickova Z, Enghild J J. Human procarboxypeptidase U, or thrombin-activable fibrinolysis inhibitor, is a substrate for transglutaminases. Evidence for transglutaminase-catalyzed cross-linking to fibrin. J Biol Chem. 1998; 273(42) 27220-27224
- 23 Ritchie H, Lawrie L C, Crombie P W, Mosesson M W, Booth N A. Cross-linking of plasminogen activator inhibitor 2 and alpha 2-antiplasmin to fibrin(ogen). J Biol Chem. 2000; 275(32) 24915-24920
- 24 Okada M, Blombäck B, Chang M D, Horowitz B. Fibronectin and fibrin gel structure. J Biol Chem. 1985; 260(3) 1811-1820
- 25 Hada M, Kaminski M, Bockenstedt P, McDonagh J. Covalent crosslinking of von Willebrand factor to fibrin. Blood. 1986; 68(1) 95-101
- 26 Lefkovits J, Plow E F, Topol E J. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N Engl J Med. 1995; 332(23) 1553-1559
- 27 Kant J A, Fornace Jr A J, Saxe D, Simon M I, McBride O W, Crabtree G R. Evolution and organization of the fibrinogen locus on chromosome 4: gene duplication accompanied by transposition and inversion. Proc Natl Acad Sci U S A. 1985; 82(8) 2344-2348
- 28 Yu S, Sher B, Kudryk B, Redman C M. Fibrinogen precursors. Order of assembly of fibrinogen chains. J Biol Chem. 1984; 259(16) 10574-10581
- 29 Brown E T, Fuller G M. Detection of a complex that associates with the Bbeta fibrinogen G-455-A polymorphism. Blood. 1998; 92(9) 3286-3293
- 30 Jacquemin B, Antoniades C, Nyberg F et al.. Common genetic polymorphisms and haplotypes of fibrinogen alpha, beta, and gamma chains affect fibrinogen levels and the response to proinflammatory stimulation in myocardial infarction survivors: the AIRGENE study. J Am Coll Cardiol. 2008; 52(11) 941-952
- 31 Uitte de Willige S, de Visser M C, Houwing-Duistermaat J J, Rosendaal F R, Vos H L, Bertina R M. Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen gamma’ levels. Blood. 2005; 106(13) 4176-4183
- 32 Carter A M, Cymbalista C M, Spector T D, Grant P J. EuroCLOT Investigators . Heritability of clot formation, morphology, and lysis: the EuroCLOT study. Arterioscler Thromb Vasc Biol. 2007; 27(12) 2783-2789
- 33 Baumann R E, Henschen A H. Human fibrinogen polymorphic site analysis by restriction endonuclease digestion and allele-specific polymerase chain reaction amplification: identification of polymorphisms at positions A alpha 312 and B beta 448. Blood. 1993; 82(7) 2117-2124
- 34 Ajjan R, Lim B C, Standeven K F et al.. Common variation in the C-terminal region of the fibrinogen beta-chain: effects on fibrin structure, fibrinolysis and clot rigidity. Blood. 2008; 111(2) 643-650
- 35 Standeven K F, Grant P J, Carter A M, Scheiner T, Weisel J W, Ariëns R A. Functional analysis of the fibrinogen Aalpha Thr312Ala polymorphism: effects on fibrin structure and function. Circulation. 2003; 107(18) 2326-2330
- 36 Cooper A V, Standeven K F, Ariëns R A. Fibrinogen gamma-chain splice variant gamma’ alters fibrin formation and structure. Blood. 2003; 102(2) 535-540
- 37 Lovely R S, Moaddel M, Farrell D H. Fibrinogen gamma′ chain binds thrombin exosite II. J Thromb Haemost. 2003; 1(1) 124-131
- 38 Fredenburgh J C, Stafford A R, Leslie B A, Weitz J I. Bivalent binding to gammaA/gamma′-fibrin engages both exosites of thrombin and protects it from inhibition by the antithrombin-heparin complex. J Biol Chem. 2008; 283(5) 2470-2477
- 39 Siebenlist K R, Meh D A, Mosesson M W. Plasma factor XIII binds specifically to fibrinogen molecules containing gamma chains. Biochemistry. 1996; 35(32) 10448-10453
- 40 Farrell D H, Thiagarajan P, Chung D W, Davie E W. Role of fibrinogen alpha and gamma chain sites in platelet aggregation. Proc Natl Acad Sci U S A. 1992; 89(22) 10729-10732
- 41 Farrell D H, Thiagarajan P. Binding of recombinant fibrinogen mutants to platelets. J Biol Chem. 1994; 269(1) 226-231
- 42 Lancellotti S, Rutella S, De Filippis V, Pozzi N, Rocca B, De Cristofaro R. Fibrinogen-elongated gamma chain inhibits thrombin-induced platelet response, hindering the interaction with different receptors. J Biol Chem. 2008; 283(44) 30193-30204
- 43 Carter A M, Catto A J, Grant P J. Association of the alpha-fibrinogen Thr312Ala polymorphism with poststroke mortality in subjects with atrial fibrillation. Circulation. 1999; 99(18) 2423-2426
- 44 Carter A M, Catto A J, Kohler H P, Ariëns R A, Stickland M H, Grant P J. Alpha-fibrinogen Thr312Ala polymorphism and venous thromboembolism. Blood. 2000; 96(3) 1177-1179
- 45 Suntharalingam J, Goldsmith K, van Marion V et al.. Fibrinogen Aalpha Thr312Ala polymorphism is associated with chronic thromboembolic pulmonary hypertension. Eur Respir J. 2008; 31(4) 736-741
- 46 Rasmussen-Torvik L J, Cushman M, Tsai M Y et al.. The association of alpha-fibrinogen Thr312Ala polymorphism and venous thromboembolism in the LITE study. Thromb Res. 2007; 121(1) 1-7
- 47 Lovely R S, Falls L A, Al-Mondhiry H A et al.. Association of gammaA/gamma′ fibrinogen levels and coronary artery disease. Thromb Haemost. 2002; 88(1) 26-31
- 48 Mannila M N, Lovely R S, Kazmierczak S C et al.. Elevated plasma fibrinogen gamma′ concentration is associated with myocardial infarction: effects of variation in fibrinogen genes and environmental factors. J Thromb Haemost. 2007; 5(4) 766-773
- 49 de Lange M, Andrew T, Snieder H et al.. Joint linkage and association of six single-nucleotide polymorphisms in the factor XIII-A subunit gene point to V34L as the main functional locus. Arterioscler Thromb Vasc Biol. 2006; 26(8) 1914-1919
- 50 Ariëns R A, Lai T S, Weisel J W, Greenberg C S, Grant P J. Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood. 2002; 100(3) 743-754
- 51 Rallidis L S, Politou M, Komporozos C et al.. Factor XIII Val34Leu polymorphism and the risk of myocardial infarction under the age of 36 years. Thromb Haemost. 2008; 99(6) 1085-1089
- 52 Shafey M, Anderson J L, Scarvelis D, Doucette S P, Gagnon F, Wells P S. Factor XIII Val34Leu variant and the risk of myocardial infarction: a meta-analysis. Thromb Haemost. 2007; 97(4) 635-641
- 53 Ariëns R A, Philippou H, Nagaswami C, Weisel J W, Lane D A, Grant P J. The factor XIII V34L polymorphism accelerates thrombin activation of factor XIII and affects cross-linked fibrin structure. Blood. 2000; 96(3) 988-995
- 54 Lim B C, Ariëns R A, Carter A M, Weisel J W, Grant P J. Genetic regulation of fibrin structure and function: complex gene-environment interactions may modulate vascular risk. Lancet. 2003; 361(9367) 1424-1431
- 55 Sobel B E, Woodcock-Mitchell J, Schneider D J, Holt R E, Marutsuka K, Gold H. Increased plasminogen activator inhibitor type 1 in coronary artery atherectomy specimens from type 2 diabetic compared with nondiabetic patients: a potential factor predisposing to thrombosis and its persistence. Circulation. 1998; 97(22) 2213-2221
- 56 Mansfield M W, Stickland M H, Grant P J. PAI-1 concentrations in first-degree relatives of patients with non-insulin-dependent diabetes: metabolic and genetic associations. Thromb Haemost. 1997; 77(2) 357-361
- 57 Eriksson P, Kallin B, van ’t Hooft F M, Båvenholm P, Hamsten A. Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc Natl Acad Sci U S A. 1995; 92(6) 1851-1855
- 58 Ossei-Gerning N, Mansfield M W, Stickland M H, Wilson I J, Grant P J. Plasminogen activator inhibitor-1 promoter 4G/5G genotype and plasma levels in relation to a history of myocardial infarction in patients characterized by coronary angiography. Arterioscler Thromb Vasc Biol. 1997; 17(1) 33-37
- 59 Ye S, Green F R, Scarabin P Y et al.. The 4G/5G genetic polymorphism in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene is associated with differences in plasma PAI-1 activity but not with risk of myocardial infarction in the ECTIM study. Etude CasTemoins de I’nfarctus du Mycocarde. Thromb Haemost. 1995; 74(3) 837-841
- 60 Mansfield M W, Stickland M H, Grant P J. Environmental and genetic factors in relation to elevated circulating levels of plasminogen activator inhibitor-1 in Caucasian patients with non-insulin-dependent diabetes mellitus. Thromb Haemost. 1995; 74(3) 842-847
- 61 Panahloo A, Mohamed-Ali V, Lane A, Green F, Humphries S E, Yudkin J S. Determinants of plasminogen activator inhibitor 1 activity in treated NIDDM and its relation to a polymorphism in the plasminogen activator inhibitor 1 gene. Diabetes. 1995; 44(1) 37-42
- 62 Eriksson P, Nilsson L, Karpe F, Hamsten A. Very-low-density lipoprotein response element in the promoter region of the human plasminogen activator inhibitor-1 gene implicated in the impaired fibrinolysis of hypertriglyceridemia. Arterioscler Thromb Vasc Biol. 1998; 18(1) 20-26
- 63 Iacoviello L, Burzotta F, Di Castelnuovo A, Zito F, Marchioli R, Donati M B. The 4G/5G polymorphism of PAI-1 promoter gene and the risk of myocardial infarction: a meta-analysis. Thromb Haemost. 1998; 80(6) 1029-1030
- 64 Boekholdt S M, Bijsterveld N R, Moons A H, Levi M, Büller H R, Peters R J. Genetic variation in coagulation and fibrinolytic proteins and their relation with acute myocardial infarction: a systematic review. Circulation. 2001; 104(25) 3063-3068
- 65 Mills J D, Ariëns R A, Mansfield M W, Grant P J. Altered fibrin clot structure in the healthy relatives of patients with premature coronary artery disease. Circulation. 2002; 106(15) 1938-1942
- 66 Bhasin N, Ariëns R A, West R M, Parry D J, Grant P J, Scott D J. Altered fibrin clot structure and function in the healthy first-degree relatives of subjects with intermittent claudication. J Vasc Surg. 2008; 48(6) 1497-1503 , e1
- 67 Meigs J B, Mittleman M A, Nathan D M et al.. Hyperinsulinemia, hyperglycemia, and impaired hemostasis: the Framingham Offspring Study. JAMA. 2000; 283(2) 221-228
- 68 Williams F MK, Carter A M, Kato B EuroCLOT Investigators et al. Identification of quantitative trait loci for fibrin clot phenotypes: the EuroCLOT study. Arterioscler Thromb Vasc Biol. 2009; 29(4) 600-605
- 69 Souto J C, Almasy L, Borrell M et al.. Genetic determinants of hemostasis phenotypes in Spanish families. Circulation. 2000; 101(13) 1546-1551
Professor P.J. GrantM.D.
Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics Health and Therapeutics
Faculty of Medicine and Health, University of Leeds, Clarendon Way, Leeds LS29JT, United Kingdom
eMail: P.J.Grant@Leeds.ac.uk