Semin Thromb Hemost 2009; 35(5): 468-477
DOI: 10.1055/s-0029-1234142
© Thieme Medical Publishers

The Impact of the Fibrinolytic System on the Risk of Venous and Arterial Thrombosis

Mirjam E. Meltzer1 , 2 , Carine J. M Doggen2 , Philip G. de Groot1 , Frits R. Rosendaal2 , 3 , Ton Lisman1 , 4
  • 1Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht
  • 2Department of Clinical Epidemiology, University Medical Center Leiden, Leiden
  • 3Department of Thrombosis and Hemostasis, University Medical Center Leiden, Leiden
  • 4Surgical Research Laboratory, Department of Surgery, University Medical Center Groningen, University of Groningen, Gronigen, The Netherlands
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
08. September 2009 (online)

ABSTRACT

In this review we discuss the association of overall hypofibrinolysis and individual fibrinolytic protein levels with venous and arterial thrombosis. Decreased overall fibrinolytic potential and high plasma levels of thrombin-activatable fibrinolysis inhibitor have been consistently associated with risk of venous thrombosis, whereas little evidence exists for a role of plasminogen, α2-antiplasmin, tissue plasminogen activator, and plasminogen activator inhibitor 1. Overall fibrinolytic potential has been associated with arterial thrombosis in young individuals, but studies on the individual components gave conflicting results. These inconsistent results could be a consequence of nonfibrinolytic properties of fibrinolytic proteins, including roles in inflammation, vascular remodeling, atherosclerosis, and the metabolic syndrome. The nonfibrinolytic properties of these proteins may have opposing effects on development of arterial disease as compared with the lytic properties, which may explain opposite results in different studies with slightly different population characteristics. These properties may be more relevant in arterial than in venous thrombosis.

REFERENCES

  • 1 Rosendaal F R. Clotting and myocardial infarction: a cycle of insights.  J Thromb Haemost. 2003;  1(4) 640-642
  • 2 Lisman T, de Groot P G, Meijers J CM, Rosendaal F R. Reduced plasma fibrinolytic potential is a risk factor for venous thrombosis.  Blood. 2005;  105(3) 1102-1105
  • 3 Meltzer M E, Doggen C JM, de Groot P G, Rosendaal F R, Lisman T. Reduced plasma fibrinolytic capacity as a potential risk factor for a first myocardial infarction in young men.  Br J Haematol. 2009;  145(1) 121-127
  • 4 Meltzer M E, Lisman T, Doggen C JM, de Groot P G, Rosendaal F R. Synergistic effects of hypofibrinolysis and genetic and acquired risk factors on the risk of a first venous thrombosis.  PLoS Med. 2008;  5(5) e97
  • 5 Lijnen H R. Plasmin and matrix metalloproteinases in vascular remodeling.  Thromb Haemost. 2001;  86(1) 324-333
  • 6 Kooistra T, Schrauwen Y, Arts J, Emeis J J. Regulation of endothelial cell t-PA synthesis and release.  Int J Hematol. 1994;  59(4) 233-255
  • 7 Hoylaerts M, Rijken D C, Lijnen H R, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin.  J Biol Chem. 1982;  257(6) 2912-2919
  • 8 Chmielewska J, Rånby M, Wiman B. Kinetics of the inhibition of plasminogen activators by the plasminogen-activator inhibitor. Evidence for ‘second-site’ interactions.  Biochem J. 1988;  251(2) 327-332
  • 9 Chmielewska J, Rånby M, Wiman B. Evidence for a rapid inhibitor to tissue plasminogen activator in plasma.  Thromb Res. 1983;  31 427-436
  • 10 Rijken D C, Lijnen H R. New insights into the molecular mechanisms of the fibrinolytic system.  J Thromb Haemost. 2009;  7(1) 4-13
  • 11 Collen D. Identification and some properties of a new fast-reacting plasmin inhibitor in human plasma.  Eur J Biochem. 1976;  69(1) 209-216
  • 12 Rákóczi I, Wiman B, Collen D. On the biological significance of the specific interaction between fibrin, plasminogen and antiplasmin.  Biochim Biophys Acta. 1978;  540(2) 295-300
  • 13 Sakata Y, Aoki N. Significance of cross-linking of alpha 2-plasmin inhibitor to fibrin in inhibition of fibrinolysis and in hemostasis.  J Clin Invest. 1982;  69(3) 536-542
  • 14 Mosnier L O, Bouma B N. Regulation of fibrinolysis by thrombin activatable fibrinolysis inhibitor, an unstable carboxypeptidase B that unites the pathways of coagulation and fibrinolysis.  Arterioscler Thromb Vasc Biol. 2006;  26(11) 2445-2453
  • 15 Prins M H, Hirsh J. A critical review of the evidence supporting a relationship between impaired fibrinolytic activity and venous thromboembolism.  Arch Intern Med. 1991;  151(9) 1721-1731
  • 16 Lisman T, Leebeek F WG, Mosnier L O et al.. Thrombin-activatable fibrinolysis inhibitor deficiency in cirrhosis is not associated with increased plasma fibrinolysis.  Gastroenterology. 2001;  121(1) 131-139
  • 17 Guimaräes A H, de Bruijne E L, Lisman T et al.. Hypofibrinolysis as risk factor for arterial thrombosis at young age.  Br J Haematol. 2009;  145(1) 115-120
  • 18 Meade T W, Ruddock V, Stirling Y, Chakrabarti R, Miller G J. Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study.  Lancet. 1993;  342(8879) 1076-1079
  • 19 Meade T W, Cooper J A, Chakrabarti R, Miller G J, Stirling Y, Howarth D J. Fibrinolytic activity and clotting factors in ischaemic heart disease in women.  BMJ. 1996;  312(7046) 1581
  • 20 Zorio E, Castelló R, Falcó C et al.. Thrombin-activatable fibrinolysis inhibitor in young patients with myocardial infarction and its relationship with the fibrinolytic function and the protein C system.  Br J Haematol. 2003;  122(6) 958-965
  • 21 Juhan-Vague I, Pyke S D, Alessi M C, Jespersen J, Haverkate F, Thompson S G. Fibrinolytic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. ECAT Study Group. European Concerted Action on Thrombosis and Disabilities.  Circulation. 1996;  94(9) 2057-2063
  • 22 Cortellaro M, Cofrancesco E, Boschetti C The PLAT Group et al. Increased fibrin turnover and high PAI-1 activity as predictors of ischemic events in atherosclerotic patients. A case-control study.  Arterioscler Thromb. 1993;  13(10) 1412-1417
  • 23 Doggen C JM, Rosendaal F R, Meijers J CM. Levels of intrinsic coagulation factors and the risk of myocardial infarction among men: opposite and synergistic effects of factors XI and XII.  Blood. 2006;  108(13) 4045-4051
  • 24 Segev A, Ellis M H, Segev F et al.. High prevalence of thrombophilia among young patients with myocardial infarction and few conventional risk factors.  Int J Cardiol. 2005;  98(3) 421-424
  • 25 Mignatti P, Robbins E, Rifkin D B. Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade.  Cell. 1986;  47(4) 487-498
  • 26 Lijnen H R. Matrix metalloproteinases and cellular fibrinolytic activity.  Biochemistry (Mosc). 2002;  67(1) 92-98
  • 27 Shah P K, Galis Z S. Matrix metalloproteinase hypothesis of plaque rupture: players keep piling up but questions remain.  Circulation. 2001;  104(16) 1878-1880
  • 28 Carmeliet P, Moons L, Ploplis V, Plow E, Collen D. Impaired arterial neointima formation in mice with disruption of the plasminogen gene.  J Clin Invest. 1997;  99(2) 200-208
  • 29 Xiao Q, Danton M J, Witte D P et al.. Plasminogen deficiency accelerates vessel wall disease in mice predisposed to atherosclerosis.  Proc Natl Acad Sci U S A. 1997;  94(19) 10335-10340
  • 30 Matsushima K, Taguchi M, Kovacs E J, Young H A, Oppenheim J J. Intracellular localization of human monocyte associated interleukin 1 (IL 1) activity and release of biologically active IL 1 from monocytes by trypsin and plasmin.  J Immunol. 1986;  136(8) 2883-2891
  • 31 Lyons R M, Gentry L E, Purchio A F, Moses H L. Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin.  J Cell Biol. 1990;  110(4) 1361-1367
  • 32 Degen J L, Bugge T H, Goguen J D. Fibrin and fibrinolysis in infection and host defense.  J Thromb Haemost. 2007;  5(Suppl 1) 24-31
  • 33 Epstein S E. The multiple mechanisms by which infection may contribute to atherosclerosis development and course.  Circ Res. 2002;  90(1) 2-4
  • 34 Favier R, Aoki N, de Moerloose P. Congenital alpha(2)-plasmin inhibitor deficiencies: a review.  Br J Haematol. 2001;  114(1) 4-10
  • 35 Brandt J T. Plasminogen and tissue-type plasminogen activator deficiency as risk factors for thromboembolic disease.  Arch Pathol Lab Med. 2002;  126(11) 1376-1381
  • 36 Okamoto A, Sakata T, Mannami T et al.. Population-based distribution of plasminogen activity and estimated prevalence and relevance to thrombotic diseases of plasminogen deficiency in the Japanese: the Suita Study.  J Thromb Haemost. 2003;  1(11) 2397-2403
  • 37 Hamsten A, Blombäck M, Wiman B et al.. Haemostatic function in myocardial infarction.  Br Heart J. 1986;  55(1) 58-66
  • 38 Folsom A R, Aleksic N, Park E, Salomaa V, Juneja H, Wu K K. Prospective study of fibrinolytic factors and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study.  Arterioscler Thromb Vasc Biol. 2001;  21(4) 611-617
  • 39 Jenkins G R, Seiffert D, Parmer R J, Miles L A. Regulation of plasminogen gene expression by interleukin-6.  Blood. 1997;  89(7) 2394-2403
  • 40 Alessi M C, Poggi M, Juhan-Vague I. Plasminogen activator inhibitor-1, adipose tissue and insulin resistance.  Curr Opin Lipidol. 2007;  18(3) 240-245
  • 41 Samad F, Pandey M, Bell P A, Loskutoff D J. Insulin continues to induce plasminogen activator inhibitor 1 gene expression in insulin-resistant mice and adipocytes.  Mol Med. 2000;  6(8) 680-692
  • 42 Peraldi P, Spiegelman B M. Studies of the mechanism of inhibition of insulin signaling by tumor necrosis factor-alpha.  J Endocrinol. 1997;  155(2) 219-220
  • 43 Samad F, Yamamoto K, Loskutoff D J. Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo. Induction by tumor necrosis factor-alpha and lipopolysaccharide.  J Clin Invest. 1996;  97(1) 37-46
  • 44 Sakamoto T, Woodcock-Mitchell J, Marutsuka K, Mitchell J J, Sobel B E, Fujii S. TNF-alpha and insulin, alone and synergistically, induce plasminogen activator inhibitor-1 expression in adipocytes.  Am J Physiol. 1999;  276(6 Pt 1) C1391-C1397
  • 45 Festa A, D’Agostino Jr R, Tracy R P, Haffner S M. Insulin Resistance Atherosclerosis Study . Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study.  Diabetes. 2002;  51(4) 1131-1137
  • 46 Morange P E, Alessi M C, Verdier M, Casanova D, Magalon G, Juhan-Vague I. PAI-1 produced ex vivo by human adipose tissue is relevant to PAI-1 blood level.  Arterioscler Thromb Vasc Biol. 1999;  19(5) 1361-1365
  • 47 De Taeye B M, Novitskaya T, Gleaves L, Covington J W, Vaughan D E. Bone marrow plasminogen activator inhibitor-1 influences the development of obesity.  J Biol Chem. 2006;  281(43) 32796-32805
  • 48 Schäfer K, Fujisawa K, Konstantinides S, Loskutoff D J. Disruption of the plasminogen activator inhibitor 1 gene reduces the adiposity and improves the metabolic profile of genetically obese and diabetic ob/ob mice.  FASEB J. 2001;  15(10) 1840-1842
  • 49 Skurk T, Lee Y M, Hauner H. Angiotensin II and its metabolites stimulate PAI-1 protein release from human adipocytes in primary culture.  Hypertension. 2001;  37(5) 1336-1340
  • 50 Birgel M, Gottschling-Zeller H, Röhrig K, Hauner H. Role of cytokines in the regulation of plasminogen activator inhibitor-1 expression and secretion in newly differentiated subcutaneous human adipocytes.  Arterioscler Thromb Vasc Biol. 2000;  20(6) 1682-1687
  • 51 Felmeden D C, Lip G Y. The renin-angiotensin-aldosterone system and fibrinolysis.  J Renin Angiotensin Aldosterone Syst. 2000;  1(3) 240-244
  • 52 Schneiderman J, Sawdey M S, Keeton M R et al.. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries.  Proc Natl Acad Sci U S A. 1992;  89(15) 6998-7002
  • 53 Lupu F, Bergonzelli G E, Heim D A et al.. Localization and production of plasminogen activator inhibitor-1 in human healthy and atherosclerotic arteries.  Arterioscler Thromb. 1993;  13(7) 1090-1100
  • 54 Sjöland H, Eitzman D T, Gordon D, Westrick R, Nabel E G, Ginsburg D. Atherosclerosis progression in LDL receptor-deficient and apolipoprotein E-deficient mice is independent of genetic alterations in plasminogen activator inhibitor-1.  Arterioscler Thromb Vasc Biol. 2000;  20(3) 846-852
  • 55 Eitzman D T, Westrick R J, Xu Z, Tyson J, Ginsburg D. Plasminogen activator inhibitor-1 deficiency protects against atherosclerosis progression in the mouse carotid artery.  Blood. 2000;  96(13) 4212-4215
  • 56 Luttun A, Lupu F, Storkebaum E et al.. Lack of plasminogen activator inhibitor-1 promotes growth and abnormal matrix remodeling of advanced atherosclerotic plaques in apolipoprotein E-deficient mice.  Arterioscler Thromb Vasc Biol. 2002;  22(3) 499-505
  • 57 Kienast J, Padró T, Steins M et al.. Relation of urokinase-type plasminogen activator expression to presence and severity of atherosclerotic lesions in human coronary arteries.  Thromb Haemost. 1998;  79(3) 579-586
  • 58 Degryse B, Sier C F, Resnati M, Conese M, Blasi F. PAI-1 inhibits urokinase-induced chemotaxis by internalizing the urokinase receptor.  FEBS Lett. 2001;  505(2) 249-254
  • 59 Meltzer M E, Doggen C JM, de Groot P G, Rosendaal F R, Lisman T. Fibrinolysis and the risk of venous and arterial thrombosis.  Curr Opin Hematol. 2007;  14(3) 242-248
  • 60 Grimaudo V, Hauert J, Bachmann F, Kruithof E K. Diurnal variation of the fibrinolytic system.  Thromb Haemost. 1988;  59(3) 495-499
  • 61 Mannucci P M, Bernardinelli L, Foco L et al.. Tissue plasminogen activator antigen is strongly associated with myocardial infarction in young women.  J Thromb Haemost. 2005;  3(2) 280-286
  • 62 Thögersen A M, Jansson J H, Boman K et al.. High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system as an independent primary risk factor.  Circulation. 1998;  98(21) 2241-2247
  • 63 Scarabin P Y, Aillaud M F, Amouyel P Prospective Epidemiological Study of Myocardial Infarction et al. Associations of fibrinogen, factor VII and PAI-1 with baseline findings among 10,500 male participants in a prospective study of myocardial infarction—the PRIME Study.  Thromb Haemost. 1998;  80(5) 749-756
  • 64 Lundblad D, Dinesen B, Rautio A, Røder M E, Eliasson M. Low level of tissue plasminogen activator activity in non-diabetic patients with a first myocardial infarction.  J Intern Med. 2005;  258(1) 13-20
  • 65 Smith A, Patterson C, Yarnell J, Rumley A, Ben-Shlomo Y, Lowe G. Which hemostatic markers add to the predictive value of conventional risk factors for coronary heart disease and ischemic stroke? The Caerphilly Study.  Circulation. 2005;  112(20) 3080-3087
  • 66 Verheugt F W, ten Cate J W, Sturk A et al.. Tissue plasminogen activator activity and inhibition in acute myocardial infarction and angiographically normal coronary arteries.  Am J Cardiol. 1987;  59(12) 1075-1079
  • 67 Båvenholm P, de Faire U, Landou C et al.. Progression of coronary artery disease in young male post-infarction patients is linked to disturbances of carbohydrate and lipoprotein metabolism and to impaired fibrinolytic function.  Eur Heart J. 1998;  19(3) 402-410
  • 68 Juhan-Vague I, Morange P E, Frere C HIFMECH Study Group et al. The plasminogen activator inhibitor-1 -675 4G/5G genotype influences the risk of myocardial infarction associated with elevated plasma proinsulin and insulin concentrations in men from Europe: the HIFMECH study.  J Thromb Haemost. 2003;  1(11) 2322-2329
  • 69 Munkvad S, Gram J, Jespersen J. A depression of active tissue plasminogen activator in plasma characterizes patients with unstable angina pectoris who develop myocardial infarction.  Eur Heart J. 1990;  11(6) 525-528
  • 70 Robinson S D, Ludlam C A, Boon N A, Newby D E. Endothelial fibrinolytic capacity predicts future adverse cardiovascular events in patients with coronary heart disease.  Arterioscler Thromb Vasc Biol. 2007;  27(7) 1651-1656
  • 71 Jansson J H, Nilsson T K, Olofsson B O. Tissue plasminogen activator and other risk factors as predictors of cardiovascular events in patients with severe angina pectoris.  Eur Heart J. 1991;  12(2) 157-161
  • 72 Cushman M, Lemaitre R N, Kuller L H et al.. Fibrinolytic activation markers predict myocardial infarction in the elderly. The Cardiovascular Health Study.  Arterioscler Thromb Vasc Biol. 1999;  19(3) 493-498
  • 73 Itakura H, Sobel B E, Boothroyd D Atherosclerotic Disease, Vascular Function and Genetic Epidemiology Advance (ADVANCE) Study et al. Do plasma biomarkers of coagulation and fibrinolysis differ between patients who have experienced an acute myocardial infarction versus stable exertional angina?.  Am Heart J. 2007;  154(6) 1059-1064
  • 74 Ridker P M, Vaughan D E, Stampfer M J et al.. Baseline fibrinolytic state and the risk of future venous thrombosis. A prospective study of endogenous tissue-type plasminogen activator and plasminogen activator inhibitor.  Circulation. 1992;  85(5) 1822-1827
  • 75 Ladenvall P, Johansson L, Jansson J H et al.. Tissue-type plasminogen activator -7,351C/T enhancer polymorphism is associated with a first myocardial infarction.  Thromb Haemost. 2002;  87(1) 105-109
  • 76 Tzoulaki I, Murray G D, Lee A J, Rumley A, Lowe G D, Fowkes F G. Relative value of inflammatory, hemostatic, and rheological factors for incident myocardial infarction and stroke: the Edinburgh Artery Study.  Circulation. 2007;  115(16) 2119-2127
  • 77 van der Bom J G, de Knijff P, Haverkate F et al.. Tissue plasminogen activator and risk of myocardial infarction. The Rotterdam Study.  Circulation. 1997;  95(12) 2623-2627
  • 78 Lowe G D, Danesh J, Lewington S et al.. Tissue plasminogen activator antigen and coronary heart disease. Prospective study and meta-analysis.  Eur Heart J. 2004;  25(3) 252-259
  • 79 Gram J, Bladbjerg E M, Møller L, Sjøl A, Jespersen J. Tissue-type plasminogen activator and C-reactive protein in acute coronary heart disease. A nested case-control study.  J Intern Med. 2000;  247(2) 205-212
  • 80 Pineda J, Marin F, Marco P et al.. Premature coronary artery disease in young (age <45) subjects: Interactions of lipid profile, thrombophilic and haemostatic markers.  Int J Cardiol. 2008 July 12;  , (Epub ahead of print)
  • 81 MacCallum P K, Cooper J A, Howarth D J, Meade T W, Miller G J. Sex differences in the determinants of fibrinolytic activity.  Thromb Haemost. 1998;  79(3) 587-590
  • 82 Crowther M A, Roberts J, Roberts R et al.. Fibrinolytic variables in patients with recurrent venous thrombosis: a prospective cohort study.  Thromb Haemost. 2001;  85(3) 390-394
  • 83 Bajzar L, Manuel R, Nesheim M E. Purification and characterization of TAFI, a thrombin-activatable fibrinolysis inhibitor.  J Biol Chem. 1995;  270(24) 14477-14484
  • 84 Boffa M B, Koschinsky M L. Curiouser and curiouser: recent advances in measurement of thrombin-activatable fibrinolysis inhibitor (TAFI) and in understanding its molecular genetics, gene regulation, and biological roles.  Clin Biochem. 2007;  40(7) 431-442
  • 85 Campbell W D, Lazoura E, Okada N, Okada H. Inactivation of C3a and C5a octapeptides by carboxypeptidase R and carboxypeptidase N.  Microbiol Immunol. 2002;  46(2) 131-134
  • 86 Myles T, Nishimura T, Yun T H et al.. Thrombin activatable fibrinolysis inhibitor, a potential regulator of vascular inflammation.  J Biol Chem. 2003;  278(51) 51059-51067
  • 87 Swaisgood C M, Schmitt D, Eaton D, Plow E F. In vivo regulation of plasminogen function by plasma carboxypeptidase B.  J Clin Invest. 2002;  110(9) 1275-1282
  • 88 Asai S, Sato T, Tada T et al.. Absence of procarboxypeptidase R induces complement-mediated lethal inflammation in lipopolysaccharide-primed mice.  J Immunol. 2004;  173(7) 4669-4674
  • 89 Sato T, Miwa T, Akatsu H et al.. Pro-carboxypeptidase R is an acute phase protein in the mouse, whereas carboxypeptidase N is not.  J Immunol. 2000;  165(2) 1053-1058
  • 90 te Velde E A, Wagenaar G T, Reijerkerk A et al.. Impaired healing of cutaneous wounds and colonic anastomoses in mice lacking thrombin-activatable fibrinolysis inhibitor.  J Thromb Haemost. 2003;  1(10) 2087-2096
  • 91 van Tilburg N H, Rosendaal F R, Bertina R M. Thrombin activatable fibrinolysis inhibitor and the risk for deep vein thrombosis.  Blood. 2000;  95(9) 2855-2859
  • 92 Eichinger S, Schönauer V, Weltermann A et al.. Thrombin-activatable fibrinolysis inhibitor and the risk for recurrent venous thromboembolism.  Blood. 2004;  103(10) 3773-3776
  • 93 Libourel E J, Bank I, Meinardi J R et al.. Co-segregation of thrombophilic disorders in factor V Leiden carriers; the contributions of factor VIII, factor XI, thrombin activatable fibrinolysis inhibitor and lipoprotein(a) to the absolute risk of venous thromboembolism.  Haematologica. 2002;  87(10) 1068-1073
  • 94 Silveira A, Schatteman K, Goossens F et al.. Plasma procarboxypeptidase U in men with symptomatic coronary artery disease.  Thromb Haemost. 2000;  84(3) 364-368
  • 95 Santamaría A, Martínez-Rubio A, Borrell M, Mateo J, Ortín R, Fontcuberta J. Risk of acute coronary artery disease associated with functional thrombin activatable fibrinolysis inhibitor plasma level.  Haematologica. 2004;  89(7) 880-881
  • 96 Schroeder V, Wilmer M, Buehler B, Kohler H P. TAFI activity in coronary artery disease: a contribution to the current discussion on TAFI assays.  Thromb Haemost. 2006;  96(2) 236-237
  • 97 Morange P E, Tregouet D A, Frere C The Prime Study Group et al. TAFI gene haplotypes, TAFI plasma levels and future risk of coronary heart disease: the PRIME Study.  J Thromb Haemost. 2005;  3(7) 1503-1510
  • 98 Meltzer M E, Doggen C J, de Groot P G, Meijers J C, Rosendaal F R, Lisman T. Low thrombin activatable fibrinolysis inhibitor activity levels are associated with an increased risk of a first myocardial infarction in men.  Haematologica. 2009;  94(6) 811-818

Ton LismanPh.D. 

Surgical Research Laboratory, Department of Surgery, University Medical Center Groningen

University of Groningen, the Netherlands

eMail: J.A.Lisman@chir.umcg.nl