Anästhesiol Intensivmed Notfallmed Schmerzther 2009; 44(7/08): 494-499
DOI: 10.1055/s-0029-1237102
Fachwissen
Intensivmedizin
© Georg Thieme Verlag Stuttgart · New York

Metabolische Veränderungen bei Brandverletzten – Pathophysiologie und Therapie

Metabolic Alterations in Burn Trauma – Pathophysiology and TherapyDavid M. Baron, Philipp G.H. Metnitz
Further Information

Publication History

Publication Date:
23 July 2009 (online)

Zusammenfassung

Brandverletzte sind in vielerlei Hinsicht ein spezielles Patientenkollektiv mit besonderen Anforderungen. Durch die Brandverletzung kommt es zu einer Störung physiologischer Abläufe. Unter anderem finden Veränderungen in der Regulation metabolischer Prozesse statt, welche im Vergleich zu anderen Traumata wesentliche Unterschiede aufweisen. In diesem Review gehen wir zuerst auf die metabolische Pathophysiologie des Verbrennungstraumas ein, um danach die klinische Relevanz einer adäquaten metabolischen Regulation zu erörtern und zuletzt Therapieansätze zu präsentieren.

Abstract

Compared to other trauma patients, burn trauma victims show alterations that require special attention. The burn trauma modifies several physiologic processes. Metabolic regulation presents itself as one of the major problems. The first part of this review deals with the metabolic pathophysiology of severe burn trauma and its clinical impact. At the end we present possible therapeutic interventions with their mode of action and common side effects.

Kernaussagen

  • Die Akutphase bei Schwerbrandverletzten geht mit einer gesteigerten Glykogenolyse und Lipolyse einher.

  • In der chronischen Phase kommt es zur Ausbildung einer peripheren Insulinresistenz.

  • Einlagerungen von FFS in Muskeln und Leber führen zu einer Verstärkung der Insulinresistenz.

  • Die Hyperglykämie führt zu Wundheilungsstörungen, einer erhöhten Infektrate und einer gesteigerten Mortalität.

  • Eine engmaschige Kontrolle und die Einstellung des Blutzuckerspiegels sind unerlässlich.

  • Die Insulingabe steht bei der Einstellung des Blutzuckerspiegels im Vordergrund.

  • Andere Therapieformen wie Beta–Rezeptorblockade oder Oxandrolon können individuell herangezogen werden.

  • Eine enterale Ernährung sollte so rasch wie möglich begonnen und entsprechend der Darmfunktion gesteigert werden.

  • Des Weiteren ist darauf zu achten, dass der Kalorienbedarf des Patienten ausreichend gedeckt ist.

  • Die Umgebungstemperatur sollte adäquat eingestellt werden.

  • Eine frühe Mobilisierung hat prognostisch positive Auswirkungen.

Literaturverzeichnis

  • 1 Wolfe RR, Durkot MJ, Allsop JR. et al. . Glucose metabolism in severely burned patients.  Metabolism. 1979;  28 1031-1039
  • 2 Wolfe RR.. Review: acute versus chronic response to burn injury.  Circ Shock. 1981;  8 105-115
  • 3 Wilmore DW, Long JM, Mason Jr. AD. et al. . Catecholamines: mediator of the hypermetabolic response to thermal injury.  Ann Surg. 1974;  180 653-669
  • 4 Carrasco GA, Van de Kar LD.. Neuroendocrine pharmacology of stress.  Eur J Pharmacol. 2003;  463 235-272
  • 5 Norbury WB, Herndon DN, Branski LK. et al. . Urinary Cortisol and Catecholamine Excretion after Burn Injury in Children.  J Clin Endocrinol Metab. 2008;  93 1270-1275
  • 6 Wilmore DW.. Pathophysiology of the hypermetabolic response to burn injury.  Journal of Trauma. 1990;  30 4-6
  • 7 Pereira CT, Herndon DN.. The pharmacologic modulation of the hypermetabolic response to burns.  Adv Surg. 2005;  39 245-261
  • 8 Jeschke MG, Mlcak RP, Finnerty CC. et al. . Burn size determines the inflammatory and hypermetabolic response.  Crit Care. 2007;  11
  • 9 Jahoor F, Desai M, Herndon DN. et al. . Dynamics of the protein metabolic response to burn injury.  Metabolism. 1988;  37 330-337
  • 10 Herndon DN, Tompkins RG.. Support of the metabolic response to burn injury.  The Lancet. 2004;  1 895-1902
  • 11 Herndon DN, Barrow RE, Rutan RL. et al. . A comparison of conservative versus early excision. Therapies in severely burned patients.  Ann Surg. 1989;  209 552-553
  • 12 Hart DW, Wolf SE, Mlcak R. et al. . Persistence of muscle catabolism after severe burn.  Surgery. 2000;  128 312-319
  • 13 Cree MG, Fram RY, Barr D. et al. . Insulin resistance, secretion and breakdown are increased 9 months following severe burn injury.  Burns. 2009;  35 63-69
  • 14 Frayn KN.. Effects of burn injury on insulin secretion and on sensitivity to insulin in the rat in vivo.  Eur J Clin Invest. 1975;  5 331-337
  • 15 Turinsky J, Saba TM, Scovill WA. et al. . Dynamics of insulin secretion and resistance after burns.  J Trauma. 1977;  17 344-350
  • 16 Wolfe RR, Miller HI, Spitzer JJ.. Glucose and lactate kinetics in burn shock.  Am J Physiol. 1977;  232 415-418
  • 17 Cree MG, Wolfe RR.. Postburn trauma insulin resistance and fat metabolism.  Am J Physiol Endocrinol Metab. 2008;  294 1-9
  • 18 Hulver MW, Dohm GL.. The molecular mechanism linking muscle fat accumulation to insulin resistance.  Proc Nutr Soc. 2004;  63 375-380
  • 19 Cree MG, Aarsland A, Herndon DN. et al. . Role of fat metabolism in burn trauma–induced skeletal muscle insulin resistance.  Crit Care Med. 2007;  35 476-483
  • 20 Cree MG, Zwetsloot JJ, Herndon DN. et al. . Insulin sensitivity is related to fat oxidation and protein kinase C activity in children with acute burn injury.  J Burn Care Res. 2008;  29 585-594
  • 21 Frayn KN, Little RA, Maycock PF. et al. . The relationship of plasma catecholamines to acute metabolic and hormonal responses to injury in man.  Circ Shock. 1985;  16 229-240
  • 22 Barret J, Jeschke MG, Herndon DN.. Fatty Infiltration of the Liver in Severely Burned Pediatric Patients: Autopsy Findings and Clinical Implications.  Journal of Trauma. 2001;  51 736-739
  • 23 Astrakas LG, Goljer I, Yasuhara S. et al. . Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma–induced apoptosis.  Faseb J. 2005;  19 1431-1440
  • 24 Griffin ME, Marcucci MJ, Cline GW. et al. . Free fatty acid–induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade.  Diabetes. 1999;  48 1270-1274
  • 25 Petersen KF, Befroy D, Dufour S. et al. . Mitochondrial dysfunction in the elderly: possible role in insulin resistance.  Science. 2003;  300 1140-1142
  • 26 Padfield KE, Astrakas LG, Zhang Q. et al. . Burn injury causes mitochondrial dysfunction in skeletal muscle.  Proc Natl Acad Sci USA. 2005;  102 5368-5373
  • 27 Cree MG, Fram RY, Herndon DN. et al. . Human mitochondrial oxidative capacity is acutely impaired after burn trauma.  Am J Surg. 2008;  196 234-239
  • 28 Barrow RE, Mlcak R, Barrow LN. et al. . Increased liver weights in severely burned children: comparison of ultrasound and autopsy measurements.  Burns. 2004;  30 565-568
  • 29 Barrow RE, Hawkins HK, Aarsland A. et al. . Identification of factors contributing to hepatomegaly in severely burned children.  Shock. 2005;  24 523-528
  • 30 Jeschke MG, Chinkes DL, Finnerty CC. et al. . Pathophysiologic Response to Severe Burn Injury.  Annals of Surgery. 2008;  248 387-401
  • 31 Chang D, DeSanti L, Demling R.. Anticatabolic and anabolic strategies in critical illness: a review of current treatment modalities.  Shock. 1998;  10 155-160
  • 32 Gore DC, Chinkes DL, Hart DW. et al. . Hyperglycemia exacerbates muscle protein catabolism in burn–injured patients.  Crit Care Med. 2002;  30 2438-2442
  • 33 Klein GL.. Burn–induced bone loss: importance, mechanisms, and management.  J Burns Wounds. 2006;  5
  • 34 Gore DC, Chinkes DL, Heggers J. et al. . Association of Hyperglycemia with Increased Mortality after Severe Burn Injury.  Journal of Trauma. 2001;  51 540-544
  • 35 Holm C, Horbrand F, Mayr M. et al. . Acute hyperglycaemia following thermal injury: friend or foe?.  Resuscitation. 2004;  60 71-77
  • 36 Mowlavi A, Andrews K, Milner S. et al. . The effects of hyperglycemia on skin graft survival in the burn patient.  Ann Plast Surg. 2000;  45 629-632
  • 37 Vanhorebeek I, Langouche L, Van den Berghe G.. Tight Blood Glucose Control With Insulin in the ICU.  Chest. 2007;  132 268-278
  • 38 Sivamani RK, Pullar CE, Manabat–Hidalgo CG. et al. . Stress–mediated increases in systemic and local epinephrine impair skin wound healing: potential new indication for beta blockers.  PLoS Med. 2009;  6
  • 39 Cummings P, Del Beccaro MA.. Antibiotics to prevent infection of simple wounds: a meta–analysis of randomized studies.  Am J Emerg Med. 1995;  13 396-400
  • 40 Mayhall CG.. The epidemiology of burn wound infections: then and now.  Clin Infect Dis. 2003;  37 543-550
  • 41 Pereira CT, Murphy KD, Herndon DN.. Altering metabolism.  J Burn Care Rehabil. 2005;  26 194-199
  • 42 Kimball SR, Jurasinski CV, Lawrence Jr. JC. et al. . Insulin stimulates protein synthesis in skeletal muscle by enhancing the association of eIF–4E and eIF–4G.  Am J Physiol. 1997;  272 754-759
  • 43 Pidcoke HF, Wade CE, Wolf SE.. Insulin and the burned patient.  Crit Care Med. 2007;  35 524-530
  • 44 Jeschke MG, Klein D, Herndon DN.. Insulin treatment improves the systemic inflammatory reaction to severe trauma.  Ann Surg. 2004;  239 553-560
  • 45 Leffler M, Hrach T, Stuerzl M. et al. . Insulin attenuates apoptosis and exerts anti–inflammatory effects in endotoxemic human macrophages.  J Surg Res. 2007;  143 398-406
  • 46 Jeschke MG, Klein D, Thasler WE. et al. . Insulin decreases inflammatory signal transcription factor expression in primary human liver cells after LPS challenge.  Mol Med. 2008;  14 11-19
  • 47 Preiser JC, Devos P.. Management of blood glucose level in intensive care.  Rev Med Liege. 2007;  62 51-54
  • 48 Hart DW, Wolf SE, Herndon DN. et al. . Energy expenditure and caloric balance after burn: increased feeding leads to fat rather than lean mass accretion.  Ann Surg. 2002;  235 152-161
  • 49 Herndon DN, Hart DW, Wolf SE. et al. . Reversal of catabolism by beta–blockade after severe burns.  N Engl J Med. 2001;  345 1223-1229
  • 50 Baron PW, Barrow RE, Pierre EJ. et al. . Prolonged use of propranolol safely decreases cardiac work in burned children.  J Burn Care Rehabil. 1997;  18 223-227
  • 51 Lynch GS, Ryall JG.. Role of {beta}–Adrenoceptor Signaling in Skeletal Muscle: Implications for Muscle Wasting and Disease.  Physiol. Rev. 2008;  88 729-767
  • 52 Voerman HJ, van Schijndel RJ, Groeneveld AB. et al. . Effects of recombinant human growth hormone in patients with severe sepsis.  Ann Surg. 1992;  216 648-655
  • 53 Herndon DN, Hawkins HK, Nguyen TT. et al. . Characterization of growth hormone enhanced donor site healing in patients with large cutaneous burns.  Ann Surg. 1995;  211 656-659
  • 54 Knox J, Demling R, Wilmore D. et al. . Increased survival after major thermal injury: the effect of growth hormone therapy in adults.  J Trauma. 1995;  39 530-532
  • 55 Jeschke MG, Finnerty CC, Kulp GA. et al. . Combination of recombinant human growth hormone and propranolol decreases hypermetabolism and inflammation in severely burned children.  Pediatr Crit Care Med. 2008;  9 209-216
  • 56 Takala J, Ruokonen E, Webster NR. et al. . Increased mortality associated with growth hormone treatment in critically ill adults.  N Engl J Med. 1999;  341 785-792
  • 57 Ruokonen E, Takala J.. Dangers of growth hormone therapy in critically ill patients.  Curr Opin Clin Nutr Metab Care. 2002;  5 199-209
  • 58 Demling RH, Orgill DP.. The anticatabolic and wound healing effects of the testosterone analog oxandrolone after severe burn injury.  J Crit Care. 2000;  15 12-17
  • 59 Wolf SE, Edelman LS, Kemalyan N. et al. . Effects of oxandrolone on outcome measures in the severely burned: a multicenter prospective randomized double–blind trial.  J Burn Care Res. 2006;  27 140-141
  • 60 Jeschke MG, Finnerty CC, Suman OE. et al. . The effect of oxandrolone on the endocrinologic, inflammatory, and hypermetabolic responses during the acute phase postburn.  Ann Surg. 2007;  246 360-362
  • 61 Pham TN, Klein MB, Gibran NS. et al. . Impact of oxandrolone treatment on acute outcomes after severe burn injury.  J Burn Care Res. 2008;  29 902-906
  • 62 Orr R, Fiatarone M. Singh. The anabolic androgenic steroid oxandrolone in the treatment of wasting and catabolic disorders: review of efficacy and safety.  Drugs. 2004;  64 725-750
  • 63 Gore DC, Wolf SE, Herndon DN. et al. . Metformin blunts stress–induced hyperglycemia after thermal injury.  Journal of Trauma. 2003;  54 555-561
  • 64 Gore DC, Wolf SE, Herndon DN. et al. . Influence of Metformin on Glucose Intolerance and Muscle Catabolism Following Severe Burn Injury.  Annals of Surgery. 2005;  241 334-342
  • 65 Gore DC, Herndon DN, Wolfe RR.. Comparison of Peripheral Metabolic Effects of Insulin and Metformin Following Severe Burn Injury.  Journal of Trauma. 2005;  59 316-323
  • 66 Cree MG, Newcomer BR, Herndon DN. et al. . PPAR–alpha agonism improves whole body and muscle mitochondrial fat oxidation, but does not alter intracellular fat concentrations in burn trauma children in a randomized controlled trial.  Nutr Metab (Lond). 2007;  4 9
  • 67 Cree MG, Zwetsloot JJ, Herndon DN. et al. . Insulin sensitivity and mitochondrial function are improved in children with burn injury during a randomized controlled trial of fenofibrate.  Ann Surg. 2007;  245 214-221
  • 68 Kasper SO, Castle SM, Daley BJ. et al. . Blockade of the renin–angiotensin system improves insulin sensitivity in thermal injury.  Shock. 2006;  26 485-488
  • 69 Henriksen EJ.. Improvement of insulin sensitivity by antagonism of the renin–angiotensin system.  Am J Physiol Regul Integr Comp Physiol. 2007;  293 974-980
  • 70 Lastra–Lastra G, Sowers JR, Restrepo–Erazo K. et al. .The role of aldosterone and angiotensin II in insulin resistance: an update. Clinical Endocrinology 2008
  • 71 Harris JA, Benedict FG.. A Biometric Study of Basal Metabolism in Man. Washington, DC: Carnegie Institution 1919
  • 72 Stucky C–CH, Moncure M, Hise M. et al. . How Accurate Are Resting Energy Expenditure Prediction Equations in Obese Trauma and Burn Patients?.  JPEN J Parenter Enteral Nutr. 2008;  32 420-426
  • 73 Griffiths RD.. Too much of a good thing: the curse of overfeeding.  Crit Care. 2007;  11 176
  • 74 Milner EA, Cioffi WG, Mason AD. et al. . A longitudinal study of resting energy expenditure in thermally injured patients.  J Trauma. 1994;  37 167-170
  • 75 Royall D, Fairholm L, Peters WJ. et al. . Continuous measurement of energy expenditure in ventilated burn patients: an analysis.  Crit Care Med. 1994;  22 399-406
  • 76 Gramlich L, Kichian K, Pinilla J. et al. . Does enteral nutrition compared to parenteral nutrition result in better outcomes in critically ill adult patients? A systematic review of the literature.  Nutrition. 2004;  20 843-848
  • 77 Wasiak J, Cleland H, Jeffery R.. Early versus late enteral nutritional support in adults with burn injury: a systematic review.  J Hum Nutr Diet. 2007;  20 75-83
  • 78 Metnitz PG, Krenn CG, Steltzer H. et al. . Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients.  Crit Care Med. 2002;  30 2051-2058
  • 79 Prelack K, Dylewski M. Sheridan RL. Practical guidelines for nutritional management of burn injury and recovery.  Burns. 2007;  33 14-24
  • 80 Lee JO, Benjamin D, Herndon DN.. Nutrition Support Strategies for Severely Burned Patients.  Nutr Clin Pract. 2005;  20 325-330
  • 81 Chan MM, Chan GM.. Nutritional therapy for burns in children and adults.  Nutrition. 2009;  25 261-269
  • 82 Metnitz PG, Bartens C, Fischer M. et al. . Antioxidant status in patients with acute respiratory distress syndrome.  Intensive Care Med. 1999;  25 180-185
  • 83 Berger MM, Shenkin A.. Vitamins and trace elements: Practical aspects of supplementation.  Nutrition. 2006;  22 952-955
  • 84 Wilmore DW, Mason Jr. AD, Johnson DW. et al. . Effect of ambient temperature on heat production and heat loss in burn patients.  J Appl Physiol. 1975;  38 593-597
  • 85 Pereira C, Murphy K, Jeschke M. et al. . Post burn muscle wasting and the effects of treatments.  Int J Biochem Cell Biol. 2005;  37 1948-1961
  • 86 Cucuzzo NA, Ferrando A, Herndon DN.. The effects of exercise programming vs traditional outpatient therapy in the rehabilitation of severely burned children.  J Burn Care Rehabil. 2001;  22 214-220

Univ.–Ass. Dr. med. David BaronAo. Univ.–Prof. Dr. med. Philipp Metnitz 

Email: david.baron@meduniwien.ac.at

Email: philipp.metnitz@meduniwien.ac.at