ABSTRACT
A vast array of successive epigenetic modifications ensures the creation of a healthy individual. Crucial epigenetic reprogramming events occur during germ cell development and early embryogenesis in mammals. As highlighted by the large offspring syndrome with in vitro conceived ovine and bovine animals, any disturbance during germ cell development or early embryogenesis has the potential to alter epigenetic reprogramming. Therefore the complete array of human assisted reproductive technology (ART), starting from ovarian hormonal stimulation to embryo uterine transfer, could have a profound impact on the epigenetic state of human in vitro produced individuals. Although some investigators have suggested an increased incidence of epigenetic abnormalities in in vitro conceived children, other researchers have refuted these allegations. To date, multiple reasons can be hypothesized why irrefutable epigenetic alterations as a result of ART have not been demonstrated yet.
KEYWORDS
Epigenetics - X-chromosome inactivation - imprinting - transgenerational inheritance
REFERENCES
1
Waddington C H.
The epigenotype.
Endeavour.
1942;
1
18-20
2 Waddington C H. The Basic Ideas of Biology. Towards a Theoretical Biology. Edinburgh, Scotland; Edinburgh University Press 1968: 1-32
3
Wu Ct, Morris J R.
Genes, genetics, and epigenetics: a correspondence.
Science.
2001;
293(5532)
1103-1105
4
Daskalos A, Nikolaidis G, Xinarianos G et al..
Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer.
Int J Cancer.
2009;
124(1)
81-87
5
Zaratiegui M, Irvine D V, Martienssen R A.
Noncoding RNAs and gene silencing.
Cell.
2007;
128(4)
763-776
6
Dodge J E, Okano M, Dick F et al..
Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization.
J Biol Chem.
2005;
280(18)
17986-17991
7
Hotchkiss R D.
The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography.
J Biol Chem.
1948;
175(1)
315-332
8
Griffith J S, Mahler H R.
DNA ticketing theory of memory.
Nature.
1969;
223(5206)
580-582
9
Ratel D, Ravanat J L, Berger F, Wion D.
N6-methyladenine: the other methylated base of DNA.
Bioessays.
2006;
28(3)
309-315
10
Sinsheimer R L.
The action of pancreatic deoxyribonuclease. II. Isomeric dinucleotides.
J Biol Chem.
1955;
215(2)
579-583
11
Woodcock D M, Crowther P J, Diver W P.
The majority of methylated deoxycytidines in human DNA are not in the CpG dinucleotide.
Biochem Biophys Res Commun.
1987;
145(2)
888-894
12
Nyce J, Liu L, Jones P A.
Variable effects of DNA-synthesis inhibitors upon DNA methylation in mammalian cells.
Nucleic Acids Res.
1986;
14(10)
4353-4367
13
Ramsahoye B H, Biniszkiewicz D, Lyko F, Clark V, Bird A P, Jaenisch R.
Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a.
Proc Natl Acad Sci U S A.
2000;
97(10)
5237-5242
14
Naveh-Many T, Cedar H.
Active gene sequences are undermethylated.
Proc Natl Acad Sci U S A.
1981;
78(7)
4246-4250
15
Waechter D E, Baserga R.
Effect of methylation on expression of microinjected genes.
Proc Natl Acad Sci U S A.
1982;
79(4)
1106-1110
16
Watt F, Molloy P L.
Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter.
Genes Dev.
1988;
2(9)
1136-1143
17
Boyes J, Bird A.
DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein.
Cell.
1991;
64(6)
1123-1134
18
Hendrich B, Bird A.
Identification and characterization of a family of mammalian methyl-CpG binding proteins.
Mol Cell Biol.
1998;
18(11)
6538-6547
19
Jones P L, Veenstra G J, Wade P A et al..
Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription.
Nat Genet.
1998;
19(2)
187-191
20
Nan X, Ng H H, Johnson C A et al..
Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex.
Nature.
1998;
393(6683)
386-389
21
Leonhardt H, Page A W, Weier H U, Bestor T H.
A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei.
Cell.
1992;
71(5)
865-873
22
Smith S S, Kaplan B E, Sowers L C, Newman E M.
Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation.
Proc Natl Acad Sci U S A.
1992;
89(10)
4744-4748
23
Bestor T, Laudano A, Mattaliano R, Ingram V.
Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases.
J Mol Biol.
1988;
203(4)
971-983
24
Okano M, Xie S, Li E.
Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases.
Nat Genet.
1998;
19(3)
219-220
25
Okano M, Bell D W, Haber D A, Li E.
DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.
Cell.
1999;
99(3)
247-257
26
Kaneda M, Okano M, Hata K et al..
Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting.
Nature.
2004;
429(6994)
900-903
27
Klose R J, Bird A P.
Genomic DNA methylation: the mark and its mediators.
Trends Biochem Sci.
2006;
31(2)
89-97
28
Perche P Y, Robert-Nicoud M, Khochbin S, Vourc'h C.
Nucleosome differentiation: role of histone H2A variants [in French].
Med Sci (Paris).
2003;
19(11)
1137-1145
29
Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W.
Histone H2A variants H2AX and H2AZ.
Curr Opin Genet Dev.
2002;
12(2)
162-169
30
Hake S B, Allis C D.
Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”.
Proc Natl Acad Sci U S A.
2006;
103(17)
6428-6435
31
Phillips D M, Johns E W.
A fractionation of the histones of group F2a from calf thymus.
Biochem J.
1965;
94
127-130
32
Kornberg R D.
Chromatin structure: a repeating unit of histones and DNA.
Science.
1974;
184(139)
868-871
33
Kouzarides T.
Chromatin modifications and their function.
Cell.
2007;
128(4)
693-705
34
Marmorstein R, Trievel R C.
Histone modifying enzymes: structures, mechanisms, and specificities.
Biochim Biophys Acta.
2009;
1789(1)
58-68
35
Strahl B D, Allis C D.
The language of covalent histone modifications.
Nature.
2000;
403(6765)
41-45
36
Pogo B G, Allfrey V G, Mirsky A E.
RNA synthesis and histone acetylation during the course of gene activation in lymphocytes.
Proc Natl Acad Sci U S A.
1966;
55(4)
805-812
37
Allfrey V G, Faulkner R, Mirsky A E.
Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis.
Proc Natl Acad Sci U S A.
1964;
51
786-794
38
Sealy L, Chalkley R.
DNA associated with hyperacetylated histone is preferentially digested by DNase I.
Nucleic Acids Res.
1978;
5(6)
1863-1876
39
Hong L, Schroth G P, Matthews H R, Yau P, Bradbury E M.
Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA.
J Biol Chem.
1993;
268(1)
305-314
40
Norton V G, Imai B S, Yau P, Bradbury E M.
Histone acetylation reduces nucleosome core particle linking number change.
Cell.
1989;
57(3)
449-457
41
Sims III R J, Nishioka K, Reinberg D.
Histone lysine methylation: a signature for chromatin function.
Trends Genet.
2003;
19(11)
629-639
42
Parra M A, Wyrick J J.
Regulation of gene transcription by the histone H2A N-terminal domain.
Mol Cell Biol.
2007;
27(21)
7641-7648
43
Parra M A, Kerr D, Fahy D, Pouchnik D J, Wyrick J J.
Deciphering the roles of the histone H2B N-terminal domain in genome-wide transcription.
Mol Cell Biol.
2006;
26(10)
3842-3852
44
Weinberg M S, Villeneuve L M, Ehsani A et al..
The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells.
RNA.
2006;
12(2)
256-262
45
Han J, Kim D, Morris K V.
Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells.
Proc Natl Acad Sci U S A.
2007;
104(30)
12422-12427
46
Kim D H, Villeneuve L M, Morris K V, Rossi J J.
Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells.
Nat Struct Mol Biol.
2006;
13(9)
793-797
47
Köhler C, Villar C B.
Programming of gene expression by Polycomb group proteins.
Trends Cell Biol.
2008;
18(5)
236-243
48
Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y.
Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis.
Cell.
2004;
116(1)
51-61
49
Henikoff S, Furuyama T, Ahmad K.
Histone variants, nucleosome assembly and epigenetic inheritance.
Trends Genet.
2004;
20(7)
320-326
50
Payer B, Lee J T.
X chromosome dosage compensation: how mammals keep the balance.
Annu Rev Genet.
2008;
42
733-772
51
Huynh K D, Lee J T.
X-chromosome inactivation: a hypothesis linking ontogeny and phylogeny.
Nat Rev Genet.
2005;
6(5)
410-418
52
Adler D A, Rugarli E I, Lingenfelter P A et al..
Evidence of evolutionary up-regulation of the single active X chromosome in mammals based on Clc4 expression levels in Mus spretus and Mus musculus.
Proc Natl Acad Sci U S A.
1997;
94(17)
9244-9248
53
Lyon M F.
Gene action in the X-chromosome of the mouse (Mus musculus L.)
Nature.
1961;
190
372-373
54
Sharman G B.
Late DNA replication in the paternally derived X chromosome of female kangaroos.
Nature.
1971;
230(5291)
231-232
55
Cooper D W, VandeBerg J L, Sharman G B, Poole W E.
Phosphoglycerate kinase polymorphism in kangaroos provides further evidence for paternal X inactivation.
Nat New Biol.
1971;
230(13)
155-157
56
Huynh K D, Lee J T.
Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos.
Nature.
2003;
426(6968)
857-862
57
Takagi N, Sasaki M.
Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse.
Nature.
1975;
256(5519)
640-642
58
Sado T, Fenner M H, Tan S S, Tam P, Shioda T, Li E.
X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation.
Dev Biol.
2000;
225(2)
294-303
59
Wang J, Mager J, Chen Y et al..
Imprinted X inactivation maintained by a mouse Polycomb group gene.
Nat Genet.
2001;
28(4)
371-375
60
Heard E, Disteche C M.
Dosage compensation in mammals: fine-tuning the expression of the X chromosome.
Genes Dev.
2006;
20(14)
1848-1867
61
Lifschytz E, Lindsley D L.
The role of X-chromosome inactivation during spermatogenesis (Drosophila-allocycly-chromosome evolution-male sterility-dosage compensation).
Proc Natl Acad Sci U S A.
1972;
69(1)
182-186
62
Okamoto I, Arnaud D, Le Baccon P et al..
Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice.
Nature.
2005;
438(7066)
369-373
63
van der Heijden G W, Dieker J W, Derijck A A et al..
Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote.
Mech Dev.
2005;
122(9)
1008-1022
64
Tada T, Obata Y, Tada M et al..
Imprint switching for non-random X-chromosome inactivation during mouse oocyte growth.
Development.
2000;
127(14)
3101-3105
65
Norris D P, Patel D, Kay G F et al..
Evidence that random and imprinted Xist expression is controlled by preemptive methylation.
Cell.
1994;
77(1)
41-51
66
Surani M A, Barton S C, Norris M L.
Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis.
Nature.
1984;
308(5959)
548-550
67
McGrath J, Solter D.
Completion of mouse embryogenesis requires both the maternal and paternal genomes.
Cell.
1984;
37(1)
179-183
68
Bartolomei M S, Zemel S, Tilghman S M.
Parental imprinting of the mouse H19 gene.
Nature.
1991;
351(6322)
153-155
69
Barlow D P, Stöger R, Herrmann B G, Saito K, Schweifer N.
The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus.
Nature.
1991;
349(6304)
84-87
70
DeChiara T M, Robertson E J, Efstratiadis A.
Parental imprinting of the mouse insulin-like growth factor II gene.
Cell.
1991;
64(4)
849-859
71
Wilkins J F, Haig D.
What good is genomic imprinting: the function of parent-specific gene expression.
Nat Rev Genet.
2003;
4(5)
359-368
72
Spahn L, Barlow D P.
An ICE pattern crystallizes.
Nat Genet.
2003;
35(1)
11-12
73
Obata Y, Kaneko-Ishino T, Koide T et al..
Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis.
Development.
1998;
125(8)
1553-1560
74
Davis T L, Yang G J, McCarrey J R, Bartolomei M S.
The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development.
Hum Mol Genet.
2000;
9(19)
2885-2894
75
Ueda T, Abe K, Miura A et al..
The paternal methylation imprint of the mouse H19 locus is acquired in the gonocyte stage during foetal testis development.
Genes Cells.
2000;
5(8)
649-659
76
Li J Y, Lees-Murdock D J, Xu G L, Walsh C P.
Timing of establishment of paternal methylation imprints in the mouse.
Genomics.
2004;
84(6)
952-960
77
Lucifero D, Mann M R, Bartolomei M S, Trasler J M.
Gene-specific timing and epigenetic memory in oocyte imprinting.
Hum Mol Genet.
2004;
13(8)
839-849
78
Hiura H, Obata Y, Komiyama J, Shirai M, Kono T.
Oocyte growth-dependent progression of maternal imprinting in mice.
Genes Cells.
2006;
11(4)
353-361
79
Lee J T.
Molecular links between X-inactivation and autosomal imprinting: X-inactivation as a driving force for the evolution of imprinting?.
Curr Biol.
2003;
13(6)
R242-R254
80
Dean W, Santos F, Reik W.
Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer.
Semin Cell Dev Biol.
2003;
14(1)
93-100
81
Nakamura T, Arai Y, Umehara H et al..
PGC7/Stella protects against DNA demethylation in early embryogenesis.
Nat Cell Biol.
2007;
9(1)
64-71
82
Morgan H D, Sutherland H G, Martin D I, Whitelaw E.
Epigenetic inheritance at the agouti locus in the mouse.
Nat Genet.
1999;
23(3)
314-318
83
Lane N, Dean W, Erhardt S et al..
Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse.
Genesis.
2003;
35(2)
88-93
84
Maher E R, Afnan M, Barratt C L.
Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and icebergs?.
Hum Reprod.
2003;
18(12)
2508-2511
85
Barker D J.
Intrauterine programming of coronary heart disease and stroke.
Acta Paediatr Suppl.
1997;
423
178-182
discussion 183
86
Doherty A S, Mann M R, Tremblay K D, Bartolomei M S, Schultz R M.
Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo.
Biol Reprod.
2000;
62(6)
1526-1535
87
Li T, Vu T H, Ulaner G A et al..
IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch.
Mol Hum Reprod.
2005;
11(9)
631-640
88
Khosla S, Dean W, Brown D, Reik W, Feil R.
Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes.
Biol Reprod.
2001;
64(3)
918-926
89
Khosla S, Dean W, Reik W, Feil R.
Culture of preimplantation embryos and its long-term effects on gene expression and phenotype.
Hum Reprod Update.
2001;
7(4)
419-427
90
Wu Q, Ohsako S, Ishimura R, Suzuki J S, Tohyama C.
Exposure of mouse preimplantation embryos to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2.
Biol Reprod.
2004;
70(6)
1790-1797
91
Shao W J, Tao L Y, Xie J Y, Gao C, Hu J H, Zhao R Q.
Exposure of preimplantation embryos to insulin alters expression of imprinted genes.
Comp Med.
2007;
57(5)
482-486
Carol A BrennerPh.D.
Departments of Obstetrics & Gynecology and Physiology, CS Mott Center for Human Growth and Development, Wayne State University, School of Medicine
275 E. Hancock St., Detroit, MI 48201
Email: cbrenner@med.wayne.edu