Obwohl das klassische Hodgkin-Lymphom (HL) als Erkrankung erstmalig
vor über 170 Jahren beschrieben wurde, konnten erst in
den letzten 15 Jahren wesentliche Fortschritte zu zentralen Fragen
seiner molekularen Pathogenese erzielt werden. Der Mangel eines
spezifischen Markerprofils in Kombination mit der geringen Anzahl der
malignen einkernigen Hodgkin- und mehrkernigen Reed-Sternberg-(HRS-)Zellen
in dem betroffenen Gewebe verhinderte lange Zeit sowohl die Identifikation
des zellulären Urspungs als auch die Beschreibung genomischer
und molekularer Defekte. Durch die Entwicklung von Techniken zur
Analyse von Einzelzellen konnte gezeigt werden, dass HRS-Zellen
von B-Zellen abstammen. Es ist allerdings deutlich geworden, dass
das nomale B-Zell-spezifische Genexpressionsprogramm in HRS-Zellen
durch verschiedene molekulare Defekte nachhaltig gestört
ist. Zudem konnten in den letzten Jahren molekulare und genomische
Defekte verschiedener Signalwege in HRS-Zellen identifiziert werden,
u. a. der NF-κB, JAK/STAT und MAPK/AP-1
Signalwege, durch die die HRS-Zellen vor dem programmierten Zelltod
geschützt werden. Trotz guter Erfolge in der klinischen
Behandlung des HL erfordert die erhebliche Spättoxizität
konventioneller Therapien die Entwicklung neuer nicht-genotoxischer
Therapiestrategien. Es wird deshalb ein wesentliches Ziel der nächsten
Jahre sein, die Kenntnisse zur molekularen Pathogenese klinisch
nutzbar zu machen und in die bisherigen Behandlungskonzepte einzubinden.
Summary
Despite the fact that classical Hodgkin lymphoma (HL) has been
described more than 170 years ago, only over the last 15 years significant
advances regarding its molecular pathogenesis have been achieved.
The lack of a specific lineage profile in combination with the low
number of the malignant mononuclear Hodgkin- and multinucleated
Reed-Sternberg- (HRS-) cells in the affected lymph nodes prevented
for a long time both the identification of its cell of origin and
of genomic and molecular defects. The development of methods for
the analysis of micromanipulated single cells made it possible to
demonstrate a B cell origin of HRS cells. However, it has become
clear that the normal B cell-specific gene expression program in
HRS cells is disrupted by various molecular lesions. Furthermore,
molecular and genomic defects of various signaling pathways could
be identified in HRS cells, including the NF-κB, JAK/STAT
and MAPK-AP-1 signaling pathways, which protect HRS cells from apoptotic
cell death. Despite significant advances in the treatment of HL,
the considerable long term toxicity of conventional therapies requires
the development of new non-genotoxic therapeutic strategies. Therefore,
it will be a central aim to develop new treatment strategies based
on these insights into HL pathogenesis.
1
Atayar C, Poppema S, Blokzijl T, Harms G, Boot M, van den Berg A.
Expression of the T-cell
transcription factors, GATA-3 and T-bet, in the neoplastic cells
of Hodgkin lymphomas.
Am J Pathol.
2005;
166
127-134
2
Bargou R C, Emmerich F, Krappmann D. et al .
Constitutive nuclear factor-kappaB-RelA
activation is required for proliferation and survival of Hodgkin’s
disease tumor cells.
J Clin Invest.
1997;
100
2961-2969
3
Bräuninger A, Hansmann M L, Strickler J G. et al .
Identification
of common germinal-center B-cell precursors in two patients with
both Hodgkin’s disease and non-Hodgkin’s lymphoma.
N Engl J Med.
1999;
340
1239-1247
4
Cobaleda C, Jochum W, Busslinger M.
Conversion of mature B cells into T cells by dedifferentiation
to uncommitted progenitors.
Nature.
2007;
449
473-477
5
Fiumara P, Snell V, Li Y. et
al .
Functional expression of receptor activator of
nuclear factor kappaB in Hodgkin disease cell lines.
Blood.
2001;
98
2784-2790
6
Gandhi M K, Lambley E, Duraiswamy J. et al .
Expression of LAG-3 by tumor-infiltrating
lymphocytes is coincident with the suppression of latent membrane
antigen-specific CD8+ T-cell function in Hodgkin lymphoma
patients.
Blood.
2006;
108
2280-2289
7
Hertel C B, Zhou X G, Hamilton-Dutoit S J, Junker S.
Loss
of B cell identity correlates with loss of B cell-specific transcription
factors in Hodgkin/Reed-Sternberg cells of classical Hodgkin
lymphoma.
Oncogene.
2002;
21
4908-4920
8
Hinz M, Lemke P, Anagnostopoulos I. et al .
Nuclear factor kappaB-dependent gene expression
profiling of Hodgkin’s disease tumor cells, pathogenetic
significance, and link to constitutive signal transducer and activator
of transcription 5a activity.
J Exp Med.
2002;
196
605-617
9
Holtick U, Vockerodt M, Pinkert D. et al .
STAT3 is essential for Hodgkin lymphoma
cell proliferation and is a target of tyrphostin AG17 which confers
sensitization for apoptosis.
Leukemia.
2005;
19
936-944
10
Ishida T, Ishii T, Inagaki A. et
al .
Specific recruitment of CC chemokine receptor 4-positive
regulatory T cells in Hodgkin lymphoma fosters immune privilege.
Cancer Res.
2006;
66
5716-5722
11
Joos S, Küpper M, Ohl S. et al .
Genomic imbalances including amplification
of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells.
Cancer Res.
2000;
60
549-552
12
Jundt F, Acikgöz Ö, Kwon S H. et al .
Aberrant expression of Notch1
interferes with the B-lymphoid phenotype of neoplastic B cells in
classical Hodgkin lymphoma.
Leukemia.
2008;
22
1587-1594
13
Jundt F, Anagnostopoulos I, Bommert K. et al .
Hodgkin/Reed-Sternberg cells induce
fibroblasts to secrete eotaxin, a potent chemoattractant for T cells
and eosinophils.
Blood.
1999;
94
2065-2071
15
Jundt F, Kley K, Anagnostopoulos I. et al .
Loss of PU.1 expression is associated with
defective immunoglobulin transcription in Hodgkin and Reed-Sternberg
cells of classical Hodgkin disease.
Blood.
2002;
99
3060-3062
16
Juszczynski P, Ouyang J, Monti S. et al .
The AP1-dependent secretion of galectin-1
by Reed Sternberg cells fosters immune privilege in classical Hodgkin
lymphoma.
Proc Natl Acad Sci U S A.
2007;
104
13 134-13 139
17
Kanzler H, Küppers R, Hansmann M L, Rajewsky K.
Hodgkin
and Reed-Sternberg cells in Hodgkin’s disease represent
the outgrowth of a dominant tumor clone derived from (crippled)
germinal center B cells.
J Exp Med.
1996;
184
1495-1505
23
Küppers R, Klein U, Schwering I. et al .
Identification of Hodgkin and Reed-Sternberg
cell-specific genes by gene expression profiling.
J Clin
Invest.
2003;
111
529-537
25
Marafioti T, Hummel M, Anagnostopoulos I, Foss H D, Huhn D, Stein H.
Classical Hodgkin’s
disease and follicular lymphoma originating from the same germinal
center B cell.
J Clin Oncol.
1999;
17
3804-3809
26
Marafioti T, Hummel M, Foss H D. et al .
Hodgkin and Reed-Sternberg cells represent
an expansion of a single clone originating from a germinal center
B-cell with functional immunoglobulin gene rearrangements but defective
immunoglobulin transcription.
Blood.
2000;
95
1443-1450
27
Mathas S, Hinz M, Anagnostopoulos I. et al .
Aberrantly expressed c-Jun and JunB are
a hallmark of Hodgkin lymphoma cells, stimulate proliferation and
synergize with NF-kappa B.
Embo J.
2002;
21
4104-4113
28
Mathas S, Janz M, Hummel F. et
al .
Intrinsic inhibition of transcription factor E2A
by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic
B cells in Hodgkin lymphoma.
Nat Immunol.
2006;
7
207-215
32
Portis T, Dyck P, Longnecker R.
Epstein-Barr Virus (EBV) LMP2A induces alterations in gene transcription
similar to those observed in Reed-Sternberg cells of Hodgkin lymphoma.
Blood.
2003;
102
4166-4178
33
Renné C, Martin-Subero J I, Eickernjäger M. et al .
Aberrant expression of ID2,
a suppressor of B-cell-specific gene expression, in Hodgkin’s lymphoma.
Am J Pathol.
2006;
169
655-664
35
Scheeren F A, Diehl S A, Smit L A. et al .
IL-21 is expressed in Hodgkin Lymphoma
and activates STAT5; evidence that activated STAT5 is required for
Hodgkin Lymphomagenesis.
Blood.
2008;
111
4706-4715
36
Skinnider B F, Elia A J, Gascoyne R D. et al .
Signal transducer and activator
of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg
cells of Hodgkin lymphoma.
Blood.
2002;
99
618-626
37
Skinnider B F, Elia A J, Gascoyne R D. et al .
Interleukin 13 and interleukin
13 receptor are frequently expressed by Hodgkin and Reed-Sternberg
cells of Hodgkin lymphoma.
Blood.
2001;
97
250-255
38
Souabni A, Jochum W, Busslinger M.
Oncogenic role of Pax5 in the T-lymphoid lineage upon ectopic
expression from the immunoglobulin heavy-chain locus.
Blood.
2007;
109
281-289
39 Stein H, Delsol G, Pileri S. . In: Jaffe ES, Harris NL, Stein H, Vardiman JW, World
Health Organization Classification of Tumors: Pathology and Genetics
of Tumors of Haematopoietic and Lymphoid tissues. Lyon; IARC Press 2001: 244-253
40
Stein H, Marafioti T, Foss H D. et al .
Down-regulation of BOB.1/OBF.1 and
Oct2 in classical Hodgkin disease but not in lymphocyte predominant
Hodgkin disease correlates with immunoglobulin transcription.
Blood.
2001;
97
496-501
41
Trieu Y, Wen X Y, Skinnider B F. et al .
Soluble interleukin-13Ralpha2 decoy
receptor inhibits Hodgkin’s lymphoma growth in vitro and
in vivo.
Cancer Res.
2004;
64
3271-3275
42
Ushmorov A, Leithäuser F, Sakk O. et al .
Epigenetic processes play a major role
in B-cell-specific gene silencing in classical Hodgkin lymphoma.
Blood.
2006;
107
2493-2500
44
van den Berg A, Visser L, Poppema S.
High expression of the CC chemokine TARC in Reed-Sternberg cells.
A possible explanation for the characteristic T-cell infiltratein
Hodgkin’s lymphoma.
Am J Pathol.
1999;
154
1685-1691
45
Vockerodt M, Morgan S L, Kuo M. et al .
The Epstein-Barr virus oncoprotein, latent
membrane protein-1, reprograms germinal centre B cells towards a
Hodgkin’s Reed-Sternberg-like phenotype.
J Pathol.
2008;
216
83-92
46
Watanabe M, Sasaki M, Itoh K. et
al .
JunB induced by constitutive CD30-extracellular
signal-regulated kinase 1/2 mitogen-activated protein kinase
signaling activates the CD30 promoter in anaplastic large cell lymphoma
and reed-sternberg cells of Hodgkin lymphoma.
Cancer Res.
2005;
65
7628-7634
47
Weniger M A, Melzner I, Menz C K. et al .
Mutations of the tumor suppressor gene
SOCS-1 in classical Hodgkin lymphoma are frequent and associated
with nuclear phospho-STAT5 accumulation.
Oncogene.
2006;
25
2679-2684