RSS-Feed abonnieren
DOI: 10.1055/s-0029-1240620
© Georg Thieme Verlag KG Stuttgart · New York
Senescent Leaves of Artemisia annua are One of the Most Active Organs for Overexpression of Artemisinin Biosynthesis Responsible Genes upon Burst of Singlet Oxygen
Publikationsverlauf
received February 10, 2009
revised July 30, 2009
accepted October 27, 2009
Publikationsdatum:
25. November 2009 (online)
Abstract
To dissect and penetrate complexicity regarding the tissue-specific and environment-induced expression modes of cytosolic and plastidial terpene biosynthetic genes in A. annua, corresponding mRNAs relevant to terpene biosynthesis were quantitatively compared among distinctive organs and during different growth stages. Although all examined mRNAs gradually elevate from June to August in tested organs, a putative artemisinin biosynthesis responsible DBR2 mRNA represents the most abundant transcript anyplace and anytime. Apart from others, senescent leaves endow global activation of artemisinin biosynthetic genes and ultimately lead to enhanced artemisinin production. Direct measurement of 1O2 burst from senescent leaves strongly supports an involvement of 1O2 in conversion from precursor(s) to artemisinin. In the context of environmental stresses, physical and chemical stress signals that include those invoking 1O2 burst were evaluated as if inducing artemisinin biosynthetic genes. The quantitative data have reiterated a common pattern of modulating artemisinin production in A. annua by triggering 1O2 burst during senescence and under chilling acclimatization. In conclusion, a missing link concatenating senescence-coupled 1O2 generation to 1O2-induced upregulation of artemisinin biosynthetic genes has been re-established, which would provide a fertile base for future endeavors pursuing further enhancements of artemisinin production.
Key words
Artemisia annua - Asteraceae - artemisinin - oxidative stress - singlet oxygen - induction - expression profile
References
- 1 Klayman D L. Qinghaosu (artemisinin): an antimalarial drug from China. Science. 1985; 228 1049-1055
- 2 Bertea C M, Freije J R, van der Woude H, Verstappen F W A, Perk L, Marquez V, de Kraker J W, Posthumus M A, Jansen B J M, de Groot A, Franssen M C R, Bouwmeester H J. Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med. 2005; 71 40-47
- 3 Covello P S, Teoh K H, Polichuk D R, Reed D W, Nowak G. Functional genomics and the biosynthesis of artemisinin. Phytochemistry. 2007; 68 1864-1871
- 4 Zeng Q P, Qiu F, Yuan L. Production of artemisinin by genetically modified microbes. Biotechnol Lett. 2008; 30 581-592
-
5 Zeng Q P, Yang R Y, Feng L L, Yang X Q.
Genetic and environmental regulation and artificial metabolic manipulation for artemisinin biosynthesis. Richter FW Biotechnology: research, technology and applications. New York; Nova Science Publishers, Inc. 2008: 159-210 - 6 Towler M J, Weathers P J. Evidence of artemisinin production from IPP stemming from both the mevalonate and the non-mevalonate pathways. Plant Cell Rep. 2007; 26 2129-2136
- 7 Bouwmeester H J, Wallaart T E, Janssen M H A, van Loo B, Jansen B J M, Posthumus M A, Schmidt C O, de Kraker J W, Konig W A, Fransen M C. Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry. 1999; 52 843-854
- 8 Teoh K H, Polichuk D R, Reed D W, Nowak G, Covello P S. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett. 2006; 580 1411-1416
- 9 Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A, Ham T S, Kirby J, Chang M C Y, Withers S T, Shiba Y, Sarpong R, Keasling J D. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 2006; 440 940-943
- 10 Lindahl A L, Olsson M E, Mercke P, Tollbom Ö, Schelin J, Brodelius M, Brodelius P E. Production of the artemisinin precursor amorpha-4,11-diene by engineered Sacharomyces cerevisiae. Biotechnol Lett. 2006; 28 571-580
- 11 Chang M C Y, Eachus R A, Trieu W, Ro D K, Keasling J D. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol. 2007; 3 274-277
- 12 Zhang Y S, Teoh K H, Reed D W, Maes L, Goossens A, Olson D J H, Ross A R S, Covello P S. The molecular cloning of artemisinic aldehyde Δ11 (13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J Biol Chem. 2008; 283 21501-21508
- 13 Sy L K, Brown G D. The mechanism of the spontaneous autoxidation of dihydro-artemisinic acid. Tetrahedron. 2002; 58 897-908
- 14 Wallaart T E, van Uden W, Lubberink H G M, Woerdenbag H J, Pras N, Quax W J. Isolation and identification of dihydroartemisinic acid from Artemisia annua and its possible role in the biosynthesis of artemisinin. J Nat Prod. 1999; 62 430-433
- 15 Lommen W J M, Schenk E, Bouwmeester H J, Verstappen F W A. Trichome dynamics and artemisinin accumulation during development and senescence of Artemisia annua leaves. Planta Med. 2006; 72 336-345
- 16 Sangwan R S, Agarwal K, Luthra R, Thakur R S, Sangwan N S. Biotransformation of arteannuic acid into arteannuin B and artemisinin in Artemisia annua. Phytochemistry. 1993; 34 1301-1302
- 17 Nair M S R, Basile D V. Bioconversion of arteannuin B to artemisinin. J Nat Prod. 1993; 56 1559-1566
- 18 Hirayama O, Nakamura K, Hamada S, Kobayashi Y. Singlet oxygen quenching ability of naturally occurring carotenoids. Lipids. 1994; 29 149-150
- 19 Wallaart T E, Bouwmeester H J, Hille J. Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta. 2001; 212 460-465
- 20 Yin L L, Zhao C, Huang Y, Yang R Y. Abiotic stress-induced expression of artemisinin biosynthesis genes in Artemisia annua L. Chin Appl Environ Biol. 2008; 14 1-5
- 21 Zeng Q P, Zhao C, Yin L L, Yang R Y, Zeng X M, Huang Y, Feng L L, Yang X Q. Cloning of artemisinin biosynthetic cDNAs and novel ESTs and quantification of low temperature-induced gene overexpression. Sci China Ser C (Life Sci). 2008; 51 232-244
- 22 Lommen W J M, Elzinga S, Verstappen F W A, Bouwmeester H J. Artemisinin and sesquiterpene precursors in dead and the green leaves of Artemisia annua L. crops. Planta Med. 2007; 73 1133-1139
- 23 Yang R Y, Feng L L, Yang X Q, Yin L L, Xu X L, Zeng Q P. Quantitative transcript profiling reveals down-regulation of a sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants. Planta Med. 2008; 74 1510-1516
- 24 Zeng Q P, Zeng X M, Yin L L, Yang R Y, Feng L L, Yang X Q. Quantification of three key enzymes involved in artemisinin biogenesis in Artemisia annua by polyclonal antisera-based ELISA. Plant Mol Biol Rep. 2009; 27 50-57
- 25 Pedraza-Chaverrí J, Barrera D, Maldonado P D, Chirino Y I, Macías-Ruvalcaba N A, Medina-Campos O N, Castro L, Salcedo M I, Hernandez-Pando R. S-allylmercaptocysteine scavenges hydroxyl radical and singlet oxygen in vitro and attenuates gentamicin- induced oxidative and nitrosative stress and renal damage in vivo. EMC Clin Pharmacol. 2004; 4 5
- 26 Velikova V, Edreva A, Loreto F. Endogenous isoprene protects Phragmites australis leaves against singlet oxygen. Physiol Plant. 2004; 122 219-225
- 27 Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C. Is the reaction catalyzed by 3-hydroxyl-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plant?. Plant Physiol. 1995; 109 1337-1343
- 28 Gregersen P L, Holm P B. Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnol J. 2007; 5 192-206
- 29 Menke F L H, Parchmann S, Mueller M J, Kijne J W, Memelink J. Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol. 1999; 119 1289-1296
- 30 Wang J W, Zhang Z, Tan R X. Stimulation of artemisinin production in Artemisia annua hairy roots by the elicitor from the endophytic Colletotrichum sp. Biotechnol Lett. 2001; 23 857-860
- 31 Xu X, Hu X, Neill S J, Fang J, Cai W. Fungal elicitor induces singlet oxygen generation, ethylene release and saponin synthesis in cultured cells of Panax ginseng C. A. Meyer. Plant Cell Physiol. 2005; 46 947-954
- 32 Wise R R, Naylor A W. Chilling-enhanced photooxidation: evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol. 1987; 83 278-282
- 33 Feng L L, Yang R Y, Yang X Q, Zeng X M, Lu W J, Zeng Q P. Synergistic re-channeling of mevalonate pathway for artemisinin overproduction in transgenic Artemisia annua. Plant Sci. 2009; 177 57-67
- 34 Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych I M, Apel K. Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signalling of stress responses in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2007; 104 672-677
- 35 Lee K P, Kim C, Landgraf F, Apel K. EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci USA. 2007; 104 10270-10275
- 36 Laloi C, Przybyla D, Apel K. A genetic approach towards elucidating the biological activity of different reactive oxygen species in Arabidopsis thaliana. J Exp Bot. 2006; 57 1719-1724
- 37 Wallaart T E, Pras N, Beekman A C, Quax W J. Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin: proof for the existence of chemotypes. Planta Med. 2000; 66 57-62
1 These authors contributed equally to the present work.
Prof. Dr. Qing-Ping Zeng
Laboratory of Biotechnology
Tropical Medicine Institute
Guangzhou University of Chinese Medicine
No. 12, Airport Road
510405 Guangzhou
People's Republic of China
Telefon: + 86 20 36 58 51 00
Fax: + 86 20 86 35 43 29
eMail: qpzeng@gzhtcm.edu.cn