Planta Med 2010; 76(7): 694-696
DOI: 10.1055/s-0029-1240623
Pharmacology
Letters
© Georg Thieme Verlag KG Stuttgart · New York

Green Tea Catechins: Inhibitors of Glycerol-3-Phosphate Dehydrogenase

Chung-Cheng Kao1 [*] , Bo-Tsung Wu2 [*] , Yi-Wei Tsuei1 , Li-Jane Shih3 , Yu-Liang Kuo4 , Yung-Hsi Kao2
  • 1Department of Emergency, Armed Forces Taoyuan General Hospital, Taoyuan, Taiwan
  • 2Department of Life Sciences, National Central University, Jhongli, Taiwan
  • 3Department of Joint Laboratory, Armed Forces Taoyuan General Hospital, Taoyuan, Taiwan
  • 4Department of Obstetrics and Gynecology, Armed Forces Taoyuan General Hospital, National Defense Medical Center, Taoyuan, Taiwan
Further Information

Publication History

received August 22, 2009 revised October 25, 2009

accepted October 28, 2009

Publication Date:
20 November 2009 (online)

Abstract

Green tea catechins, especially (−)-epigallocatechin-3-gallate (EGCG), are known to regulate obesity and fat accumulation. We performed a kinetic analysis in a cell-free system to determine the mode of inhibition of glycerol-3-phosphate dehydrogenase (GPDH; EC 1.1.1.8) by EGCG. GPDH catalyzes the β-nicotinamide adenine dinucleotide (NADH)-dependent reduction of dihydroxyacetone phosphate (DHAP) to yield glycerol-3-phosphate, which serves as one of the major precursors of triacylglycerols. We found that EGCG dose-dependently inhibited GPDH activity at a concentration of approximately 20 μM for 50 % inhibition. The IC50 values of other green tea catechins, such as (−)-epicatechin, (−)-epicatechin-3-gallate, and (−)-epigallocatechin, were all above 100 µM. This suggests a catechin type-dependent effect. Based on double-reciprocal plots of the kinetic data, EGCG was a noncompetitive inhibitor of the GPDH substrates, NADH and DHAP, with respective inhibition constants (Ki) of 18 and 31 µM. Results of this study possibly support previous studies that EGCG mediates fat content.

References

  • 1 Roberts E A H. The chemistry of tea fermentation.  J Sci Food Agric. 1952;  3 193-198
  • 2 Liao S, Kao Y H, Hiipakka R A. Green tea: biochemical and biological basis for health benefits.  Vitam Horm. 2001;  62 1-94
  • 3 Yang C S, Wang Z Y. Tea and cancer.  J Natl Cancer Inst. 1993;  85 1038-1049
  • 4 Calixto J B, Campos M M, Otuki M F, Santos A R. Anti-inflammatory compounds of plant origin. Part II. Modulation of pro-inflammatory cytokines, chemokines and adhesion molecules.  Planta Med. 2004;  70 93-103
  • 5 Mendel S, Weinreb O, Amit T, Youdim M B. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (−)-epigallocatechin-3-gallate: implications for neurodegenerative diseases.  J Neurochem. 2004;  88 1555-1569
  • 6 Kao Y H, Chang H H, Lee M J, Chen C L. Tea, obesity, and diabetes.  Mol Nutr Food Res. 2006;  50 188-210
  • 7 Wolfram S, Wang Y, Thielecke F. Anti-obesity effects of green tea: from bedside to bench.  Mol Nutr Food Res. 2006;  50 176-187
  • 8 Lin J K, Lin-Shiau S Y. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols.  Mol Nutr Food Res. 2006;  50 211-217
  • 9 Koyama Y, Abe K, Sano Y, Ishizaki Y, Njelekela M, Shoji Y, Hara Y, Isemura M. Effects of green tea on gene expression of hepatic gluconeogenic enzymes in vivo.  Planta Med. 2004;  70 1100-1102
  • 10 Dulloo A G, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, Chantre P, Vandermander J. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans.  Am J Clin Nutr. 1999;  70 1040-1045
  • 11 Dulloo A G, Seydoux J, Girardier L, Chantre P, Vandermander J. Green tea and thermogenesis: interaction between catechin-polyphenols, caffeine and sympathetic activity.  Int J Obes Relat Metab Disord. 2000;  24 252-258
  • 12 Wang C T, Chang H H, Hsiao C H, Lee M J, Ku H C, Hu Y J, Kao Y H. The effects of green tea (−)-epigallocatechin-3-gallate on reactive oxygen species in 3T3-L1 preadipocytes and adipocytes depend on the glutathione and 67 kDa laminin receptor pathways.  Mol Nutr Food Res. 2009;  53 349-360
  • 13 Ku H C, Chang H H, Liu H C, Hsiao C H, Lee M J, Hu Y J, Hung P F, Liu C W, Kao Y H. Green tea (−)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway.  Am J Physiol Cell Physiol. 2009;  297 C121-C132
  • 14 Wise L S, Green H. Participation of one isozyme of cytosolic glycerophosphate dehydrogenase in the adipose conversion of 3T3 cells.  J Biol Chem. 1979;  25 273-275
  • 15 Mochizuki M, Hasegawa N. Stereospecific effects of catechin isomers on insulin induced lipogenesis in 3T3-L1 cells.  Phytother Res. 2004;  18 449-450
  • 16 Hwang J T, Park I J, Shin J I, Lee Y K, Lee S K, Baik H W, Ha J, Park O J. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase.  Biochem Biophys Res Commun. 2005;  338 694-699
  • 17 Furuyashiki T, Nagayasu H, Aoki Y, Bessho H, Hashimoto T, Kanazawa K, Ashida H. Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3T3-L1 cells.  Biosci Biotechnol Biochem. 2004;  68 2353-2359
  • 18 Moon H S, Chung C S, Lee H G, Kim T G, Choi Y J, Cho C S. Inhibitory effect of (−)-epigallocatechin-3-gallate on lipid accumulation of 3T3-L1 cells.  Obesity. 2007;  15 2571-2582
  • 19 Wang X, Tian W. Green tea epigallocatechin gallate: a natural inhibitor of fatty acid synthase.  Biochem Biophys Res Commun. 2001;  288 1200-1206
  • 20 Abe I, Seki T, Umehara K, Miyase T, Noguchi H, Sakakibara J, Ono T. Green tea polyphenols: novel and potent inhibitors of squalene epoxidase.  Biochem Biophys Res Commun. 2000;  268 767-771
  • 21 Haslam E. Natural polyphenols (vegetable tannins) as drugs: possible modes of action.  J Nat Prod. 1996;  59 205-215
  • 22 Ireland R C, Kotarski M A, Johnston L A, Stadler U, Birkenmeier E, Kozak L P. Primary structure of the mouse glycerol-3-phosphate dehydrogenase gene.  J Biol Chem. 1986;  261 11779-11785
  • 23 Hiipakka R A, Zhang H Z, Dai W, Dai Q, Liao S. Structure-activity relationships for inhibition of human 5α-reductases by polyphenols.  Biochem Pharmacol. 2002;  63 1165-1176
  • 24 Chosh K S, Maiti T K, Dasgupta S. Green tea polyphenols as inhibitors of ribonuclease A.  Biochem Biophys Res Commun. 2004;  325 807-811
  • 25 Abe I, Kashiwagi K, Noguchi H. Antioxidative galloyl esters as enzyme inhibitors of p-hydroxybenzoate hydroxylase.  FEBS Lett. 2000;  483 131-134
  • 26 Lee W J, Shim J Y, Zhu B T. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids.  Mol Pharmacol. 2005;  68 1018-1030
  • 27 Chen D, Wang C Y, Lambert J D, Ai N, Welsh W J, Yang C S. Inhibition of human liver catechol-O-methyltransferase by tea catechins and their metabolites: structure-activity relationship and molecular-modeling studies.  Biochem Pharmacol. 2005;  69 1523-1531
  • 28 Rejman J, Kozubek A. Inhibitory effect of natural phenolic lipids upon NAD-dependent dehydrogenases and on triglyceride accumulation in 3T3-L1 cells in culture.  J Agric Food Chem. 2004;  52 246-250
  • 29 Lee M J, Wang Z Y, Li H, Chen L, Sun Y, Gobbo S, Balentine D A, Yang C S. Analysis of plasma and urinary tea polyphenols in human subjects.  Cancer Epidemiol Biomarkers Prev. 1995;  4 393-399
  • 30 Ullmann U, Haller J, Decourt J P, Girault N, Girault J, Richard-Caudron A S, Pineau B, Weber P. A single ascending dose study of epigallocatechin gallate in healthy volunteers.  J Int Med Res. 2003;  31 88-101
  • 31 Lambert J D, Yang C S. Mechanisms of cancer prevention by tea constituents.  J Nutr. 2003;  133 3262S-3267S

1 C.-C. K. and B.-T. W. contributed equally to this work.

Dr. Yung-Hsi Kao

Department of Life Science
National Central University

Number 300, Jhongda Road

Jhongli City, Taoyuan County 32001

Taiwan

Phone: + 88 6 34 26 08 39

Fax: + 88 6 34 22 84 82

Email: ykao@cc.ncu.edu.tw